Orbital Tomography
  • Home
  • Publications
  • People
  • Menu Menu

Publications

Show all

35 entries « ‹ 1 of 2 › »

2023

35.

A. Windischbacher

Investigating Ground and Excited State Properties of Complex Organic/Inorganic Interfaces With Ab-Initio Calculations PhD Thesis

2023.

BibTeX | Tags: DACH

@phdthesis{nokey,
title = {Investigating Ground and Excited State Properties of Complex Organic/Inorganic Interfaces With Ab-Initio Calculations},
author = {A. Windischbacher},
year = {2023},
date = {2023-10-02},
keywords = {DACH},
pubstate = {published},
tppubtype = {phdthesis}
}

Close

34.

C. S. Kern

Exploring the Frontiers of Photoemission Orbital Tomography PhD Thesis

2023.

BibTeX | Tags: DACH

@phdthesis{Kern2023b,
title = {Exploring the Frontiers of Photoemission Orbital Tomography},
author = {C. S. Kern},
year = {2023},
date = {2023-09-01},
urldate = {2023-09-01},
keywords = {DACH},
pubstate = {published},
tppubtype = {phdthesis}
}

Close

2022

33.

D. Brandstetter

Photoemission Distributions from Time-Dependent Density Functional Theory Masters Thesis

2022.

Abstract | Links | BibTeX | Tags: DACH

@mastersthesis{Brandstetter2022,
title = {Photoemission Distributions from Time-Dependent Density Functional Theory},
author = {D. Brandstetter},
url = {https://homepage.uni-graz.at/en/peter.puschnig/theses/},
year = {2022},
date = {2022-08-01},
urldate = {2022-08-01},
abstract = {A recent study in photoemission orbital tomography [Science 371, 1056 (2021)] has demonstrated that transiently excited electrons can be traced in time. This has become possible through measuring their signature in the angle-resolved momentum distribution of photoelectrons released by a high-energy probe pulse. Further developing this exciting and powerful new technique, dubbed orbital cinematography, is a desirable track for future experimental development. In this work, we use time-dependent density functional theory to scout ahead and perform an ab-initio simulation of a sub-femtosecond pump-probe angle-resolved photoemission experiment. We investigate potential issues and possible remedies in the description of ARPES within the framework of TD-DFT and conclude with momentum maps of the frontier orbitals.},
keywords = {DACH},
pubstate = {published},
tppubtype = {mastersthesis}
}

Close

A recent study in photoemission orbital tomography [Science 371, 1056 (2021)] has demonstrated that transiently excited electrons can be traced in time. This has become possible through measuring their signature in the angle-resolved momentum distribution of photoelectrons released by a high-energy probe pulse. Further developing this exciting and powerful new technique, dubbed orbital cinematography, is a desirable track for future experimental development. In this work, we use time-dependent density functional theory to scout ahead and perform an ab-initio simulation of a sub-femtosecond pump-probe angle-resolved photoemission experiment. We investigate potential issues and possible remedies in the description of ARPES within the framework of TD-DFT and conclude with momentum maps of the frontier orbitals.

Close

  • https://homepage.uni-graz.at/en/peter.puschnig/theses/

Close

32.

M. S. Sättele, A. Windischbacher, K. Greulich, L. Egger, A. Haags, H. Kirschner, R. Ovsyannikov, E. Giangrisostomi, A. Gottwald, M. Richter, S. Soubatch, F. S. Tautz, M. G. Ramsey, P. Puschnig, G. Koller, H. F. Bettinger, T. Chassé, H. Peisert

Hexacene on Cu(110) and Ag(110): Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer Journal Article

In: J. Phys. Chem. C, vol. 126, pp. 5036-5045, 2022.

Abstract | Links | BibTeX | Tags: DACH

@article{Saettele2022,
title = {Hexacene on Cu(110) and Ag(110): Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer},
author = {M. S. Sättele and A. Windischbacher and K. Greulich and L. Egger and A. Haags and H. Kirschner and R. Ovsyannikov and E. Giangrisostomi and A. Gottwald and M. Richter and S. Soubatch and F. S. Tautz and M. G. Ramsey and P. Puschnig and G. Koller and H. F. Bettinger and T. Chassé and H. Peisert},
doi = {10.1021/acs.jpcc.2c00081},
year = {2022},
date = {2022-01-01},
journal = {J. Phys. Chem. C},
volume = {126},
pages = {5036-5045},
abstract = {Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).

Close

  • doi:10.1021/acs.jpcc.2c00081

Close

31.

A. Haags, X. Yang, L. Egger, D. Brandstetter, H. Kirschner, F. C. Bocquet, G. Koller, A. Gottwald, M. Richter, J. M. Gottfried, M. G. Ramsey, P. Puschnig, S. Soubatch, F. S. Tautz

Momentum-space imaging of σ-orbitals for chemical analysis Journal Article

In: Sci. Adv., vol. 8, pp. eabn0819, 2022.

Abstract | Links | BibTeX | Tags: DACH

@article{Haags2021,
title = {Momentum-space imaging of σ-orbitals for chemical analysis},
author = {A. Haags and X. Yang and L. Egger and D. Brandstetter and H. Kirschner and F. C. Bocquet and G. Koller and A. Gottwald and M. Richter and J. M. Gottfried and M. G. Ramsey and P. Puschnig and S. Soubatch and F. S. Tautz},
doi = {10.1126/sciadv.abn0819},
year = {2022},
date = {2022-01-01},
journal = {Sci. Adv.},
volume = {8},
pages = {eabn0819},
abstract = {Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.

Close

  • doi:10.1126/sciadv.abn0819

Close

30.

X. Yang, M. Jugovac, G. Zamborlini, V. Feyer, G. Koller, P. Puschnig, S. Soubatch, M. G. Ramsey, F. S. Tautz

Momentum-selective orbital hybridization Journal Article

In: Nat. Commun., vol. 13, pp. 5148, 2022.

Abstract | Links | BibTeX | Tags: DACH

@article{Yang2022,
title = {Momentum-selective orbital hybridization},
author = {X. Yang and M. Jugovac and G. Zamborlini and V. Feyer and G. Koller and P. Puschnig and S. Soubatch and M. G. Ramsey and F. S. Tautz},
doi = {10.1038/s41467-022-32643-z},
year = {2022},
date = {2022-01-01},
journal = {Nat. Commun.},
volume = {13},
pages = {5148},
abstract = {When a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too. Here, we report photoemission orbital tomography measurements of hybrid orbitals that emerge from molecular orbitals at a molecule-on-metal interface. We find that in the hybrid orbitals only those partial waves of the original orbital survive which match the metal band structure. Moreover, we find that the conversion of the metal’s surface state into a hybrid interface state is also governed by momentum matching constraints. Our experiments demonstrate the possibility to measure hybridisation momentum-selectively, thereby enabling deep insights into the complicated interplay of bulk states, surface states, and molecular orbitals in the formation of the electronic interface structure at molecule-on-metal hybrid interfaces.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

When a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too. Here, we report photoemission orbital tomography measurements of hybrid orbitals that emerge from molecular orbitals at a molecule-on-metal interface. We find that in the hybrid orbitals only those partial waves of the original orbital survive which match the metal band structure. Moreover, we find that the conversion of the metal’s surface state into a hybrid interface state is also governed by momentum matching constraints. Our experiments demonstrate the possibility to measure hybridisation momentum-selectively, thereby enabling deep insights into the complicated interplay of bulk states, surface states, and molecular orbitals in the formation of the electronic interface structure at molecule-on-metal hybrid interfaces.

Close

  • doi:10.1038/s41467-022-32643-z

Close

29.

P. Hurdax, C. S. Kern, T. G. Boné, A. Haags, M. Hollerer, L. Egger, X. Yang, H. Kirschner, A. Gottwald, M. Richter, F. C. Bocquet, S. Soubatch, G. Koller, F. S. Tautz, M. Sterrer, P. Puschnig, M. G. Ramsey

Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography Journal Article

In: ACS Nano, vol. 16, pp. 17435-17443, 2022.

Abstract | Links | BibTeX | Tags: DACH

@article{Hurdax2022,
title = {Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography},
author = {P. Hurdax and C. S. Kern and T. G. Boné and A. Haags and M. Hollerer and L. Egger and X. Yang and H. Kirschner and A. Gottwald and M. Richter and F. C. Bocquet and S. Soubatch and G. Koller and F. S. Tautz and M. Sterrer and P. Puschnig and M. G. Ramsey},
doi = {10.1021/acsnano.2c08631},
year = {2022},
date = {2022-01-01},
journal = {ACS Nano},
volume = {16},
pages = {17435-17443},
abstract = {Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.

Close

  • doi:10.1021/acsnano.2c08631

Close

28.

F. Presel, C. S. Kern, T. G. Boné, F. Schwarz, P. Puschnig, M. G. Ramsey, M. Sterrer

Charge and adsorption height dependence of the self-metalation of porphyrins on ultrathin MgO(001) films Journal Article

In: Phys. Chem. Chem. Phys., vol. 24, pp. 28540-28547, 2022.

Abstract | Links | BibTeX | Tags: DACH

@article{Presel2022,
title = {Charge and adsorption height dependence of the self-metalation of porphyrins on ultrathin MgO(001) films},
author = {F. Presel and C. S. Kern and T. G. Boné and F. Schwarz and P. Puschnig and M. G. Ramsey and M. Sterrer},
doi = {10.1039/D2CP04688A},
year = {2022},
date = {2022-01-01},
journal = {Phys. Chem. Chem. Phys.},
volume = {24},
pages = {28540-28547},
abstract = {We have experimentally determined the adsorption structure, charge state, and metalation state of porphin, the fundamental building block of porphyrins, on ultrathin Ag(001)-supported MgO(001) films by scanning tunneling microscopy and photoemission spectroscopy, supported by calculations based on density functional theory. By tuning the substrate work function to values below and above the critical work function for charging, we succeeded in the preparation of 2H-P monolayers which contain negatively charged and uncharged molecules. Significantly, it is shown that the porphin molecules self-metalate at room temperature, forming the corresponding Mg-porphin, irrespective of their charge state. This is in contrast to self-metalation of tetraphenyl porphyrin (TPP), which occurs on planar MgO(001) only if the molecules are negatively charged. The different reactivity is explained by the reduced molecule-substrate distance of the planar porphin molecule compared to the bulkier TPP. The results of this study shed light on the mechanism of porphyrin self-metalation on oxides and highlight the role of the adsorption geometry on the chemical reactivity.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

We have experimentally determined the adsorption structure, charge state, and metalation state of porphin, the fundamental building block of porphyrins, on ultrathin Ag(001)-supported MgO(001) films by scanning tunneling microscopy and photoemission spectroscopy, supported by calculations based on density functional theory. By tuning the substrate work function to values below and above the critical work function for charging, we succeeded in the preparation of 2H-P monolayers which contain negatively charged and uncharged molecules. Significantly, it is shown that the porphin molecules self-metalate at room temperature, forming the corresponding Mg-porphin, irrespective of their charge state. This is in contrast to self-metalation of tetraphenyl porphyrin (TPP), which occurs on planar MgO(001) only if the molecules are negatively charged. The different reactivity is explained by the reduced molecule-substrate distance of the planar porphin molecule compared to the bulkier TPP. The results of this study shed light on the mechanism of porphyrin self-metalation on oxides and highlight the role of the adsorption geometry on the chemical reactivity.

Close

  • doi:10.1039/D2CP04688A

Close

27.

M. Stredansky, S. Moro, M. Corva, H. M. Sturmeit, V. Mischke, D. Janas, I. Cojocariu, M. Jugovac, A. Cossaro, A. Verdini, L. Floreano, Z. Feng, A. Sala, G. Comelli, A. Windischbacher, P. Puschnig, C. Hohner, M. Kettner, J. Libuda, M. Cinchetti, C. M. Schneider, V. Feyer, E. Vesselli, G. Zamborlini

Disproportionation of Nitric Oxide at a Surface-Bound Nickel Porphyrinoid Journal Article

In: Angew. Chem. Int. Ed., vol. 61, pp. e202201916, 2022.

Abstract | Links | BibTeX | Tags: DACH

@article{Stredansky2022,
title = {Disproportionation of Nitric Oxide at a Surface-Bound Nickel Porphyrinoid},
author = {M. Stredansky and S. Moro and M. Corva and H. M. Sturmeit and V. Mischke and D. Janas and I. Cojocariu and M. Jugovac and A. Cossaro and A. Verdini and L. Floreano and Z. Feng and A. Sala and G. Comelli and A. Windischbacher and P. Puschnig and C. Hohner and M. Kettner and J. Libuda and M. Cinchetti and C. M. Schneider and V. Feyer and E. Vesselli and G. Zamborlini},
doi = {10.1002/anie.202201916},
year = {2022},
date = {2022-01-01},
journal = {Angew. Chem. Int. Ed.},
volume = {61},
pages = {e202201916},
abstract = {Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI- and FeIII-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI- and FeIII-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.

Close

  • doi:10.1002/anie.202201916

Close

26.

P. Hurdax

Charge Transfer Across Ultrathin Dielectric Layers: A Controlled Study of the Phenomenon on MgO on Ag(100) PhD Thesis

2022.

BibTeX | Tags: DACH

@phdthesis{Hurdax2022b,
title = {Charge Transfer Across Ultrathin Dielectric Layers: A Controlled Study of the Phenomenon on MgO on Ag(100)},
author = {P. Hurdax},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
keywords = {DACH},
pubstate = {published},
tppubtype = {phdthesis}
}

Close

25.

A. Thomas, T. Leoni, O. Siri, C. Becker, M. Unzog, C. S. Kern, P. Puschnig, P. Zeppenfeld

A One-Dimensional High-Order Commensurate Phase of Tilted Molecules Journal Article

In: Phys. Chem. Chem. Phys., vol. 24, pp. 9118-9122, 2022.

Abstract | Links | BibTeX | Tags: DACH

@article{Thomas2022,
title = {A One-Dimensional High-Order Commensurate Phase of Tilted Molecules},
author = {A. Thomas and T. Leoni and O. Siri and C. Becker and M. Unzog and C. S. Kern and P. Puschnig and P. Zeppenfeld},
doi = {10.1039/D2CP00437B},
year = {2022},
date = {2022-01-01},
journal = {Phys. Chem. Chem. Phys.},
volume = {24},
pages = {9118-9122},
abstract = {We report on the formation of a high-order commensurate (HOC) structure of 5,14-dihydro-5,7,12,14-tetraazapentacene (DHTAP) molecules on the highly corrugated Cu(110)–(2 × 1)O surface. Scanning tunnelling microscopy shows that the DHTAP molecules form a periodic uniaxial arrangement in which groups of seven molecules are distributed over exactly nine substrate lattice spacings along the [10] direction. DFT-calculations reveal that this peculiar arrangement is associated with different tilting of the seven DHTAP molecules within the quasi one-dimensional HOC unit cell. The orientational degree of freedom thus adds a new parameter, which can efficiently stabilize complex molecular structures on corrugated surfaces.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

We report on the formation of a high-order commensurate (HOC) structure of 5,14-dihydro-5,7,12,14-tetraazapentacene (DHTAP) molecules on the highly corrugated Cu(110)–(2 × 1)O surface. Scanning tunnelling microscopy shows that the DHTAP molecules form a periodic uniaxial arrangement in which groups of seven molecules are distributed over exactly nine substrate lattice spacings along the [10] direction. DFT-calculations reveal that this peculiar arrangement is associated with different tilting of the seven DHTAP molecules within the quasi one-dimensional HOC unit cell. The orientational degree of freedom thus adds a new parameter, which can efficiently stabilize complex molecular structures on corrugated surfaces.

Close

  • doi:10.1039/D2CP00437B

Close

2021

24.

L. Reicht

Ab-initio Investigations of the Electronic Structure of Armchair Graphene Nanoribbons on the Au(111) Surface Masters Thesis

2021.

Abstract | BibTeX | Tags: DACH

@mastersthesis{Reicht2021,
title = {Ab-initio Investigations of the Electronic Structure of Armchair Graphene Nanoribbons on the Au(111) Surface},
author = {L. Reicht},
year = {2021},
date = {2021-03-06},
urldate = {2021-03-06},
abstract = {Armchair graphene nanoribbons (AGNR) have gained increased attention in the recent years, because it became possible to produce them atomically precise via a bottom-up approach. Due to their tunable band gap, AGNRs have the potential to be used in opto-electronic devices and therefore could replace silicon in specific applications. Given these prospects, it is not surprising, that a fair amount of research has gone into understanding their electronic structure. However there is still a lack in understanding how surfaces affect their electronic structure.
This work tries to fill this gap by investigating the effect of a Au(111) surface on the electronic structure of 7-, 9- and 13-AGNR, which are the AGNRs that are probably the most relevant for technical applications. Special focus is placed on the simulation of angle-resolved photoemission spectroscopy (ARPES) experiments. The ever increasing resolution of ARPES allows the direct measurement of the electronic band structure. In order to understand the results of ARPES experiments, simulations of it are essential. Additionally to the ARPES simulations, various other aspects of the AGNRs were investigated with ab-initio simulations. These include the electronic band structure, density of states (DOS), band gap, adsorption position on Au(111), adsorption height and charge density.
To perform these ab-initio investigations, density functional theory (DFT) is employed in this work. Using the Kohn-Sham orbitals from the DFT simulation, the photoemission intensities of ARPES experiments were calculated. Simulated ARPES band and momentum maps of 7-AGNR/Au(111) are compared to multiple experiments. They consistently show good agreement, thereby confirming the validity of the used methods.},
keywords = {DACH},
pubstate = {published},
tppubtype = {mastersthesis}
}

Close

Armchair graphene nanoribbons (AGNR) have gained increased attention in the recent years, because it became possible to produce them atomically precise via a bottom-up approach. Due to their tunable band gap, AGNRs have the potential to be used in opto-electronic devices and therefore could replace silicon in specific applications. Given these prospects, it is not surprising, that a fair amount of research has gone into understanding their electronic structure. However there is still a lack in understanding how surfaces affect their electronic structure.
This work tries to fill this gap by investigating the effect of a Au(111) surface on the electronic structure of 7-, 9- and 13-AGNR, which are the AGNRs that are probably the most relevant for technical applications. Special focus is placed on the simulation of angle-resolved photoemission spectroscopy (ARPES) experiments. The ever increasing resolution of ARPES allows the direct measurement of the electronic band structure. In order to understand the results of ARPES experiments, simulations of it are essential. Additionally to the ARPES simulations, various other aspects of the AGNRs were investigated with ab-initio simulations. These include the electronic band structure, density of states (DOS), band gap, adsorption position on Au(111), adsorption height and charge density.
To perform these ab-initio investigations, density functional theory (DFT) is employed in this work. Using the Kohn-Sham orbitals from the DFT simulation, the photoemission intensities of ARPES experiments were calculated. Simulated ARPES band and momentum maps of 7-AGNR/Au(111) are compared to multiple experiments. They consistently show good agreement, thereby confirming the validity of the used methods.

Close

23.

C. Dösinger

Simulation of Angle-Resolved Photoemission Intensity Maps for Two-Dimensional Materials Masters Thesis

2021.

Abstract | Links | BibTeX | Tags: DACH

@mastersthesis{Doesinger2021,
title = {Simulation of Angle-Resolved Photoemission Intensity Maps for Two-Dimensional Materials},
author = {C. Dösinger},
url = {https://homepage.uni-graz.at/en/peter.puschnig/theses/},
year = {2021},
date = {2021-03-01},
urldate = {2021-03-01},
abstract = {Angle-resolved photoemission spectroscopy (ARPES) is the most direct experimental technique to investigate the electronic band structure of surfaces and layered materials. ARPES maps are routinely compared to results from ab-initio band structure calculations. However, simulations of photoemission cross-sections including transition matrix element effects which provide additional insights are rare, especially simulations that include spin-orbit coupling in the band structure calculation.
In this thesis, the electronic ground state is calculated using density functional theory (DFT). Based on the ground state wave function, angle-resolved photoemission intensity maps are simulated within the one-step model of photoemission, by modelling the final state of the photoelectron as a plane wave. This plane wave final state (PWFS) approach has proven to work surprisingly well for monolayers of organic molecules on metal surfaces. For this work, the approach is extended to include spin-orbit coupling (SOC). The results of the simulations are compared to experiments and calculations using a tight binding approach.
The method is applied to three classes of materials. First, the transition metal dichalcogenides (TMD) tungsten disulphide (WS2 ) and tungsten diselenide (WSe2 ), second, a monolayer of silver-tellurium on a silver-(111) surface (AgTe/Ag(111)), and, third, mono-layer and bilayer graphene. The simulations for the TMDs are able the correctly describe the ARPES intensities and the spin-splitting of the bands. However, results for AgTe/Ag(111) show discrepancies to the experiments. It is shown that it is possible to include SOC in the PWFS approach, which can yield reliable results. However, further tests are needed.},
keywords = {DACH},
pubstate = {published},
tppubtype = {mastersthesis}
}

Close

Angle-resolved photoemission spectroscopy (ARPES) is the most direct experimental technique to investigate the electronic band structure of surfaces and layered materials. ARPES maps are routinely compared to results from ab-initio band structure calculations. However, simulations of photoemission cross-sections including transition matrix element effects which provide additional insights are rare, especially simulations that include spin-orbit coupling in the band structure calculation.
In this thesis, the electronic ground state is calculated using density functional theory (DFT). Based on the ground state wave function, angle-resolved photoemission intensity maps are simulated within the one-step model of photoemission, by modelling the final state of the photoelectron as a plane wave. This plane wave final state (PWFS) approach has proven to work surprisingly well for monolayers of organic molecules on metal surfaces. For this work, the approach is extended to include spin-orbit coupling (SOC). The results of the simulations are compared to experiments and calculations using a tight binding approach.
The method is applied to three classes of materials. First, the transition metal dichalcogenides (TMD) tungsten disulphide (WS2 ) and tungsten diselenide (WSe2 ), second, a monolayer of silver-tellurium on a silver-(111) surface (AgTe/Ag(111)), and, third, mono-layer and bilayer graphene. The simulations for the TMDs are able the correctly describe the ARPES intensities and the spin-splitting of the bands. However, results for AgTe/Ag(111) show discrepancies to the experiments. It is shown that it is possible to include SOC in the PWFS approach, which can yield reliable results. However, further tests are needed.

Close

  • https://homepage.uni-graz.at/en/peter.puschnig/theses/

Close

22.

A. Reichmann

Electronic and Aromatic Structure of Kekulene Studied by Density Functional Theory Masters Thesis

2021.

Abstract | Links | BibTeX | Tags: DACH

@mastersthesis{Reichmann2021,
title = {Electronic and Aromatic Structure of Kekulene Studied by Density Functional Theory},
author = {A. Reichmann},
url = {https://homepage.uni-graz.at/en/peter.puschnig/theses/},
year = {2021},
date = {2021-03-01},
urldate = {2021-03-01},
abstract = {In this work the geometric, aromatic and electronic structure of the polycyclic hydrocarbon kekulene (C48 H24 ) is studied using density functional theory (DFT), the harmonic oscillation model of aromaticity (HOMA), the simple Hückel molecular orbital theory and the probe particle model.
Experimental results of kekulene adsorbed on the two copper substrates, Cu(111) and Cu(110) are compared to DFT optimized calculations regarding the same metal-organic interfaces as well as theoretical calculations of gas phase kekulene.
Firstly, the energetically most favorable adsorption position of kekulene on the copper surfaces is obtained. With the optimized configuration the aromatic structure is investigated via the HOMA. In order to further analyze the aromaticity of kekulene, various theoretical models of kekulene are constructed by fixing the geometric structure of kekulene and by fixing electronic structure via the Hückel molecular orbital model. These models, the DFT optimized structures of free kekulene as well as the kekulene/Cu interface are examined in terms of their photoemission intensity, in order to gain insights into their electronic structure. The photoemission momentum maps are compared with photoemission momentum maps gained from angle resolved photoemission spectroscopy measurements. Furthermore, the density of states is investigated for the DFT optimized calculations and the charge density distribution and real space distribution of the frontier orbital nodal structure are investigated of all theoretical configurations. Finally the probe particle model is used in order to simulate non-contact atomic force microscopy and inelastic tunneling spectroscopy measurements.
From the theoretical, as well as the experimental results, it is concluded that the aromatic Clar’s sextet model is a good predictor of kekulene’s aromatic structure.},
keywords = {DACH},
pubstate = {published},
tppubtype = {mastersthesis}
}

Close

In this work the geometric, aromatic and electronic structure of the polycyclic hydrocarbon kekulene (C48 H24 ) is studied using density functional theory (DFT), the harmonic oscillation model of aromaticity (HOMA), the simple Hückel molecular orbital theory and the probe particle model.
Experimental results of kekulene adsorbed on the two copper substrates, Cu(111) and Cu(110) are compared to DFT optimized calculations regarding the same metal-organic interfaces as well as theoretical calculations of gas phase kekulene.
Firstly, the energetically most favorable adsorption position of kekulene on the copper surfaces is obtained. With the optimized configuration the aromatic structure is investigated via the HOMA. In order to further analyze the aromaticity of kekulene, various theoretical models of kekulene are constructed by fixing the geometric structure of kekulene and by fixing electronic structure via the Hückel molecular orbital model. These models, the DFT optimized structures of free kekulene as well as the kekulene/Cu interface are examined in terms of their photoemission intensity, in order to gain insights into their electronic structure. The photoemission momentum maps are compared with photoemission momentum maps gained from angle resolved photoemission spectroscopy measurements. Furthermore, the density of states is investigated for the DFT optimized calculations and the charge density distribution and real space distribution of the frontier orbital nodal structure are investigated of all theoretical configurations. Finally the probe particle model is used in order to simulate non-contact atomic force microscopy and inelastic tunneling spectroscopy measurements.
From the theoretical, as well as the experimental results, it is concluded that the aromatic Clar’s sextet model is a good predictor of kekulene’s aromatic structure.

Close

  • https://homepage.uni-graz.at/en/peter.puschnig/theses/

Close

21.

X. Yang

Investigating the Interaction between π-Conjugated Organic Molecules and Metal Surfaces with Photoemission Tomography PhD Thesis

2021, ISBN: 978-3-95806-584-0.

Abstract | Links | BibTeX | Tags: DACH

@phdthesis{Yang2021,
title = {Investigating the Interaction between π-Conjugated Organic Molecules and Metal Surfaces with Photoemission Tomography},
author = {X. Yang},
editor = {Verlag Forschungszentrum Jülich GmbH Zentralbibliothek},
url = {http://hdl.handle.net/2128/29044},
isbn = {978-3-95806-584-0},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
abstract = {Photoemission tomography (PT) is a combined experimental and theoretical technique applied to molecule–metal interfaces which uses angle-resolved photoemission spectroscopy over a wide angular range, while the photoelectron angular distributions in reciprocal space (momentum maps, or called k-maps) are interpreted in terms of the molecular orbital structure of the initial state. This thesis uses PT to investigate various aspects of the interaction between π-conjugated organic molecular adsorbates and metal surfaces: PT was successfully used to identify the exact products of chemical reactions at surfaces and their local bonding. The measured k-maps confirm a modification of the orbital structure of dibromo-bianthracene on Cu(110) in the thermal reaction and the fully hydrogenated bisanthene is found to be the correct reaction intermediate. To decouple molecular adsorbates from the metal substrate, PT was employed to gauge whether charge is transferred through the interface. Oxygen adsorbed on the Cu(100) surface immobilizes the surface electrons in the Cu–Ocovalent bonds, thus achieving electronic and physical decoupling of perylene-tetracarboxylic-dianhydride as determined by combined results of PT and normal incidence X-ray standing waves. A special example of an electronically inhomogeneous unary molecular layer on a metal surface is showcased in the saturated monolayer of tetracene on Ag(110). With the help of PT, two highest occupied molecular orbital peaks in the photoemission spectra were found, indicating that two molecular species coexist in the tetracene layer—while one molecule remains neutral, another is charged. Finally, we applied PT to study photoelectron angular distributions for highly-hybridized molecule–metal systems, monolayers of p-sexiphenyl, p-quinquephenyl, and pentacene on Cu(110) and on Ag(110), respectively. In k-maps measured for the lowest unoccupied molecular orbital, PT has identified the scattering of either the Shockley surface states or the states around the projected bulk band gap. The scattering vectors can be directly related to reciprocal lattice vectors of the overlayer structure.},
keywords = {DACH},
pubstate = {published},
tppubtype = {phdthesis}
}

Close

Photoemission tomography (PT) is a combined experimental and theoretical technique applied to molecule–metal interfaces which uses angle-resolved photoemission spectroscopy over a wide angular range, while the photoelectron angular distributions in reciprocal space (momentum maps, or called k-maps) are interpreted in terms of the molecular orbital structure of the initial state. This thesis uses PT to investigate various aspects of the interaction between π-conjugated organic molecular adsorbates and metal surfaces: PT was successfully used to identify the exact products of chemical reactions at surfaces and their local bonding. The measured k-maps confirm a modification of the orbital structure of dibromo-bianthracene on Cu(110) in the thermal reaction and the fully hydrogenated bisanthene is found to be the correct reaction intermediate. To decouple molecular adsorbates from the metal substrate, PT was employed to gauge whether charge is transferred through the interface. Oxygen adsorbed on the Cu(100) surface immobilizes the surface electrons in the Cu–Ocovalent bonds, thus achieving electronic and physical decoupling of perylene-tetracarboxylic-dianhydride as determined by combined results of PT and normal incidence X-ray standing waves. A special example of an electronically inhomogeneous unary molecular layer on a metal surface is showcased in the saturated monolayer of tetracene on Ag(110). With the help of PT, two highest occupied molecular orbital peaks in the photoemission spectra were found, indicating that two molecular species coexist in the tetracene layer—while one molecule remains neutral, another is charged. Finally, we applied PT to study photoelectron angular distributions for highly-hybridized molecule–metal systems, monolayers of p-sexiphenyl, p-quinquephenyl, and pentacene on Cu(110) and on Ag(110), respectively. In k-maps measured for the lowest unoccupied molecular orbital, PT has identified the scattering of either the Shockley surface states or the states around the projected bulk band gap. The scattering vectors can be directly related to reciprocal lattice vectors of the overlayer structure.

Close

  • http://hdl.handle.net/2128/29044

Close

20.

L. Egger

Photoemission tomography of oriented molecular films PhD Thesis

2021.

Abstract | Links | BibTeX | Tags: DACH

@phdthesis{Egger2021,
title = {Photoemission tomography of oriented molecular films},
author = {L. Egger},
url = {https://resolver.obvsg.at/urn:nbn:at:at-ubg:1-161958},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
abstract = {This thesis presents a photoemission tomography (PT) study of different organic molecules on metal and oxide surfaces, aiming to provide a deeper understanding of the properties of these organic films on different substrates. Over the last years, PT has proven to be a powerful and useful tool for investigating the electronic and geometric structure of oriented layers of organic molecules. In this thesis, the limits and possibilities of PT within the simple plane wave final state approximation are tested. The present thesis is therefore parted into three main sections. First, the usefulness of PT applied to small molecules is investigated. These include benzene, carbon monoxide and the like on metal surfaces, particularly on more reactive surfaces than silver or copper. Since these molecules lack periodicity in their orbitals, it has been suggested that the plane wave approach used for the calculation part of PT was not sufficient. In this thesis, it is shown that PT can be used to understand the electronic structure of a monolayer of benzene on Pd(110). Even though there are some aberrations between theory and experiments, PT is a useful tool for obtaining a simple picture. Second, acene molecules of different lengths (tetracene, pentacene, heptacene) are investigated on silver and copper surfaces. Since the acenes on silver are not “distorted” by the interaction with the substrate, the momentum maps are comparable to the gas phase calculation. This also facilitates investigating the changes in the electronic structure of acenes with change of their lengths. In contrast, the acenes on Cu(110) have a strong dispersion. However, to interpret the observed ARUPS, the extended two-dimensional system wave function can be applied in an analogue manner. The last part investigates metalation of the organic molecule 2H-tetraphenylporphyrin (2H-TPP) on MgO films. Until now, the self-metalation process is generally attributed to low coordination or defect sites as stoichometric oxides are very stable. In this work, it will be shown that the self-metalation of 2H-TPP on thin MgO films is facilitated by charge transfer from the underlying metal substrate to the molecules.},
keywords = {DACH},
pubstate = {published},
tppubtype = {phdthesis}
}

Close

This thesis presents a photoemission tomography (PT) study of different organic molecules on metal and oxide surfaces, aiming to provide a deeper understanding of the properties of these organic films on different substrates. Over the last years, PT has proven to be a powerful and useful tool for investigating the electronic and geometric structure of oriented layers of organic molecules. In this thesis, the limits and possibilities of PT within the simple plane wave final state approximation are tested. The present thesis is therefore parted into three main sections. First, the usefulness of PT applied to small molecules is investigated. These include benzene, carbon monoxide and the like on metal surfaces, particularly on more reactive surfaces than silver or copper. Since these molecules lack periodicity in their orbitals, it has been suggested that the plane wave approach used for the calculation part of PT was not sufficient. In this thesis, it is shown that PT can be used to understand the electronic structure of a monolayer of benzene on Pd(110). Even though there are some aberrations between theory and experiments, PT is a useful tool for obtaining a simple picture. Second, acene molecules of different lengths (tetracene, pentacene, heptacene) are investigated on silver and copper surfaces. Since the acenes on silver are not “distorted” by the interaction with the substrate, the momentum maps are comparable to the gas phase calculation. This also facilitates investigating the changes in the electronic structure of acenes with change of their lengths. In contrast, the acenes on Cu(110) have a strong dispersion. However, to interpret the observed ARUPS, the extended two-dimensional system wave function can be applied in an analogue manner. The last part investigates metalation of the organic molecule 2H-tetraphenylporphyrin (2H-TPP) on MgO films. Until now, the self-metalation process is generally attributed to low coordination or defect sites as stoichometric oxides are very stable. In this work, it will be shown that the self-metalation of 2H-TPP on thin MgO films is facilitated by charge transfer from the underlying metal substrate to the molecules.

Close

  • https://resolver.obvsg.at/urn:nbn:at:at-ubg:1-161958

Close

19.

D. Brandstetter, X. Yang, D. Lüftner, F. S. Tautz, P. Puschnig

kMap.py: A Python program for simulation and data analysis in photoemission tomography Journal Article

In: Comp. Phys. Commun., vol. 263, pp. 107905, 2021.

Abstract | Links | BibTeX | Tags: DACH

@article{Brandstetter2020,
title = {kMap.py: A Python program for simulation and data analysis in photoemission tomography},
author = {D. Brandstetter and X. Yang and D. Lüftner and F. S. Tautz and P. Puschnig},
doi = {10.1016/j.cpc.2021.107905},
year = {2021},
date = {2021-01-01},
journal = {Comp. Phys. Commun.},
volume = {263},
pages = {107905},
abstract = {Ultra-violet photoemission spectroscopy is a widely-used experimental technique to investigate the valence electronic structure of surfaces and interfaces. When detecting the intensity of the emitted electrons not only as a function of their kinetic energy, but also depending on their emission angle, as is done in angle-resolved photoemission spectroscopy (ARPES), extremely rich information about the electronic structure of the investigated sample can be extracted. For organic molecules adsorbed as well-oriented ultra-thin films on metallic surfaces, ARPES has evolved into a technique called photoemission tomography (PT). By approximating the final state of the photoemitted electron as a free electron, PT uses the angular dependence of the photocurrent, a so-called momentum map or k-map, and interprets it as the Fourier transform of the initial state’s molecular orbital, thereby gaining insights into the geometric and electronic structure of organic/metal interfaces. In this contribution, we present kMap.py which is a Python program that enables the user, via a PyQt-based graphical user interface, to simulate photoemission momentum maps of molecular orbitals and to perform a one-to-one comparison between simulation and experiment. Based on the plane wave approximation for the final state, simulated momentum maps are computed numerically from a fast Fourier transform (FFT) of real space molecular orbital distributions, which are used as program input and taken from density functional calculations. The program allows the user to vary a number of simulation parameters, such as the final state kinetic energy, the molecular orientation or the polarization state of the incident light field. Moreover, also experimental photoemission data can be loaded into the program, enabling a direct visual comparison as well as an automatic optimization procedure to determine structural parameters of the molecules or weights of molecular orbitals contributions. With an increasing number of experimental groups employing photoemission tomography to study molecular adsorbate layers, we expect kMap.py to serve as a helpful analysis software to further extend the applicability of PT.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Ultra-violet photoemission spectroscopy is a widely-used experimental technique to investigate the valence electronic structure of surfaces and interfaces. When detecting the intensity of the emitted electrons not only as a function of their kinetic energy, but also depending on their emission angle, as is done in angle-resolved photoemission spectroscopy (ARPES), extremely rich information about the electronic structure of the investigated sample can be extracted. For organic molecules adsorbed as well-oriented ultra-thin films on metallic surfaces, ARPES has evolved into a technique called photoemission tomography (PT). By approximating the final state of the photoemitted electron as a free electron, PT uses the angular dependence of the photocurrent, a so-called momentum map or k-map, and interprets it as the Fourier transform of the initial state’s molecular orbital, thereby gaining insights into the geometric and electronic structure of organic/metal interfaces. In this contribution, we present kMap.py which is a Python program that enables the user, via a PyQt-based graphical user interface, to simulate photoemission momentum maps of molecular orbitals and to perform a one-to-one comparison between simulation and experiment. Based on the plane wave approximation for the final state, simulated momentum maps are computed numerically from a fast Fourier transform (FFT) of real space molecular orbital distributions, which are used as program input and taken from density functional calculations. The program allows the user to vary a number of simulation parameters, such as the final state kinetic energy, the molecular orientation or the polarization state of the incident light field. Moreover, also experimental photoemission data can be loaded into the program, enabling a direct visual comparison as well as an automatic optimization procedure to determine structural parameters of the molecules or weights of molecular orbitals contributions. With an increasing number of experimental groups employing photoemission tomography to study molecular adsorbate layers, we expect kMap.py to serve as a helpful analysis software to further extend the applicability of PT.

Close

  • doi:10.1016/j.cpc.2021.107905

Close

18.

M. S. Sättele, A. Windischbacher, L. Egger, A. Haags, P. Hurdax, H. Kirschner, A. Gottwald, M. Richter, F. C. Bocquet, S. Soubatch, F. S. Tautz, H. F. Bettinger, H. Peisert, T. Chassé, M. G. Ramsey, P. Puschnig, G. Koller

Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110) Journal Article

In: J. Phys. Chem. C, vol. 125, pp. 2918-2925, 2021.

Abstract | Links | BibTeX | Tags: DACH

@article{Saettele2020,
title = {Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)},
author = {M. S. Sättele and A. Windischbacher and L. Egger and A. Haags and P. Hurdax and H. Kirschner and A. Gottwald and M. Richter and F. C. Bocquet and S. Soubatch and F. S. Tautz and H. F. Bettinger and H. Peisert and T. Chassé and M. G. Ramsey and P. Puschnig and G. Koller},
doi = {10.1021/acs.jpcc.0c09062},
year = {2021},
date = {2021-01-01},
journal = {J. Phys. Chem. C},
volume = {125},
pages = {2918-2925},
abstract = {Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces.

Close

  • doi:10.1021/acs.jpcc.0c09062

Close

17.

L. Egger, M. Hollerer, C. S. Kern, H. Herrmann, P. Hurdax, A. Haags, X. Yang, A. Gottwald, M. Richter, S. Soubatch, F. S. Tautz, G. Koller, P. Puschnig, M. G. Ramsey, M. Sterrer

Charge-promoted self-metalation of porphyrins on an oxide surface Journal Article

In: Angew. Chem. Int. Ed., vol. 60, pp. 5078-5082, 2021.

Abstract | Links | BibTeX | Tags: DACH

@article{Egger2020,
title = {Charge-promoted self-metalation of porphyrins on an oxide surface},
author = {L. Egger and M. Hollerer and C. S. Kern and H. Herrmann and P. Hurdax and A. Haags and X. Yang and A. Gottwald and M. Richter and S. Soubatch and F. S. Tautz and G. Koller and P. Puschnig and M. G. Ramsey and M. Sterrer},
doi = {10.1002/anie.202015187},
year = {2021},
date = {2021-01-01},
journal = {Angew. Chem. Int. Ed.},
volume = {60},
pages = {5078-5082},
abstract = {Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.

Close

  • doi:10.1002/anie.202015187

Close

16.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, U. Höfer

Tracing orbital images on ultrafast time scales Journal Article

In: Science, vol. 371, pp. 1056-1059, 2021.

Abstract | Links | BibTeX | Tags: DACH

@article{Wallauer2020,
title = {Tracing orbital images on ultrafast time scales},
author = {R. Wallauer and M. Raths and K. Stallberg and L. Münster and D. Brandstetter and X. Yang and J. Güdde and P. Puschnig and S. Soubatch and C. Kumpf and F. C. Bocquet and F. S. Tautz and U. Höfer},
doi = {10.1126/science.abf3286},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {Science},
volume = {371},
pages = {1056-1059},
abstract = {Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.

Close

  • doi:10.1126/science.abf3286

Close

15.

G. Di Santo, T. Miletić, M. Schwendt, Y. Zhou, B. M. Kariuki, K. D. M. Harris, L. Floreano, A. Goldoni, P. Puschnig, L. Petaccia, D. Bonifazi

Orbital Mapping of Semiconducting Perylenes on Cu(111) Journal Article

In: J. Chem. Phys. C, vol. 125, pp. 24477-24486, 2021.

Abstract | Links | BibTeX | Tags: DACH

@article{Santo2021,
title = {Orbital Mapping of Semiconducting Perylenes on Cu(111)},
author = {G. Di Santo and T. Miletić and M. Schwendt and Y. Zhou and B. M. Kariuki and K. D. M. Harris and L. Floreano and A. Goldoni and P. Puschnig and L. Petaccia and D. Bonifazi},
doi = {10.1021/acs.jpcc.1c05575},
year = {2021},
date = {2021-01-01},
journal = {J. Chem. Phys. C},
volume = {125},
pages = {24477-24486},
abstract = {Semiconducting O-doped polycyclic aromatic hydrocarbons constitute a class of molecules whose optoelectronic properties can be tailored by acting on the π-extension of the carbon-based frameworks and on the oxygen linkages. Although much is known about their photophysical and electrochemical properties in solution, their self-assembly interfacial behavior on solid substrates has remained unexplored so far. In this paper, we have focused our attention on the on-surface self-assembly of O-doped bi-perylene derivatives. Their ability to assemble in ordered networks on Cu(111) single-crystalline surfaces allowed a combination of structural, morphological, and spectroscopic studies. In particular, the exploitation of the orbital mapping methodology based on angle-resolved photoemission spectroscopy, with the support of scanning tunneling microscopy and low-energy electron diffraction, allowed the identification of both the electronic structure of the adsorbates and their geometric arrangement. Our multi-technique experimental investigation includes the structure determination from powder X-ray diffraction data for a specific compound and demonstrates that the electronic structure of such large molecular self-assembled networks can be studied using the reconstruction methods of molecular orbitals from photoemission data even in the presence of segregated chiral domains.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Semiconducting O-doped polycyclic aromatic hydrocarbons constitute a class of molecules whose optoelectronic properties can be tailored by acting on the π-extension of the carbon-based frameworks and on the oxygen linkages. Although much is known about their photophysical and electrochemical properties in solution, their self-assembly interfacial behavior on solid substrates has remained unexplored so far. In this paper, we have focused our attention on the on-surface self-assembly of O-doped bi-perylene derivatives. Their ability to assemble in ordered networks on Cu(111) single-crystalline surfaces allowed a combination of structural, morphological, and spectroscopic studies. In particular, the exploitation of the orbital mapping methodology based on angle-resolved photoemission spectroscopy, with the support of scanning tunneling microscopy and low-energy electron diffraction, allowed the identification of both the electronic structure of the adsorbates and their geometric arrangement. Our multi-technique experimental investigation includes the structure determination from powder X-ray diffraction data for a specific compound and demonstrates that the electronic structure of such large molecular self-assembled networks can be studied using the reconstruction methods of molecular orbitals from photoemission data even in the presence of segregated chiral domains.

Close

  • doi:10.1021/acs.jpcc.1c05575

Close

14.

I. Cojocariu, F. Feyersinger, P. Puschnig, L. Schio, L. Floreano, V. Feyer, C. M. Schneider

Insight into intramolecular chemical structure modifications by on-surface reaction using photoemission tomography Journal Article

In: Chem. Commun., vol. 57, pp. 3050-3053, 2021.

Abstract | Links | BibTeX | Tags: DACH

@article{Cojocariu2021,
title = {Insight into intramolecular chemical structure modifications by on-surface reaction using photoemission tomography},
author = {I. Cojocariu and F. Feyersinger and P. Puschnig and L. Schio and L. Floreano and V. Feyer and C. M. Schneider},
doi = {10.1039/D1CC00311A},
year = {2021},
date = {2021-01-01},
journal = {Chem. Commun.},
volume = {57},
pages = {3050-3053},
abstract = {The sensitivity of photoemission tomography (PT) to directly probe single molecule on-surface intramolecular reactions will be shown here. PT application in the study of molecules possessing peripheral ligands and structural flexibility is tested on the temperature-induced dehydrogenation intramolecular reaction on Ag(100), leading from CoOEP to the final product CoTBP. Along with the ring-closure reaction, the electronic occupancy and energy level alignment of the frontier orbitals, as well as the oxidation state of the metal ion, are elucidated for both the CoOEP and CoTBP systems.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

The sensitivity of photoemission tomography (PT) to directly probe single molecule on-surface intramolecular reactions will be shown here. PT application in the study of molecules possessing peripheral ligands and structural flexibility is tested on the temperature-induced dehydrogenation intramolecular reaction on Ag(100), leading from CoOEP to the final product CoTBP. Along with the ring-closure reaction, the electronic occupancy and energy level alignment of the frontier orbitals, as well as the oxidation state of the metal ion, are elucidated for both the CoOEP and CoTBP systems.

Close

  • doi:10.1039/D1CC00311A

Close

13.

T. G. Boné, A. Windischbacher, M. S. Sättele, K. Greulich, L. Egger, T. Jauk, F. Lackner, H. F. Bettinger, H. Peisert, T. Chassé, M. G. Ramsey, M. Sterrer, G. Koller, P. Puschnig

Demonstrating the Impact of the Adsorbate Orientation on the Charge Transfer at Organic-Metal Interfaces Journal Article

In: J. Phys. Chem. C, vol. 125, pp. 9129-9137, 2021.

Abstract | Links | BibTeX | Tags: DACH

@article{Bone2021,
title = {Demonstrating the Impact of the Adsorbate Orientation on the Charge Transfer at Organic-Metal Interfaces},
author = {T. G. Boné and A. Windischbacher and M. S. Sättele and K. Greulich and L. Egger and T. Jauk and F. Lackner and H. F. Bettinger and H. Peisert and T. Chassé and M. G. Ramsey and M. Sterrer and G. Koller and P. Puschnig},
doi = {10.1021/acs.jpcc.1c01306},
year = {2021},
date = {2021-01-01},
journal = {J. Phys. Chem. C},
volume = {125},
pages = {9129-9137},
abstract = {Charge-transfer processes at molecule–metal interfaces play a key role in tuning the charge injection properties in organic-based devices and thus, ultimately, the device performance. Here, the metal’s work function and the adsorbate’s electron affinity are the key factors that govern the electron transfer at the organic/metal interface. In our combined experimental and theoretical work, we demonstrate that the adsorbate’s orientation may also be decisive for the charge transfer. By thermal cycloreversion of diheptacene isomers, we manage to produce highly oriented monolayers of the rodlike, electron-acceptor molecule heptacene on a Cu(110) surface with molecules oriented either along or perpendicular to the close-packed metal rows. This is confirmed by scanning tunneling microscopy (STM) images as well as by angle-resolved ultraviolet photoemission spectroscopy (ARUPS). By utilizing photoemission tomography momentum maps, we show that the lowest unoccupied molecular orbital (LUMO) is fully occupied and also, the LUMO + 1 gets significantly filled when heptacene is oriented along the Cu rows. Conversely, for perpendicularly aligned heptacene, the molecular energy levels are shifted significantly toward the Fermi energy, preventing charge transfer to the LUMO + 1. These findings are fully confirmed by our density functional calculations and demonstrate the possibility to tune the charge transfer and level alignment at organic–metal interfaces through the adjustable molecular alignment.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Charge-transfer processes at molecule–metal interfaces play a key role in tuning the charge injection properties in organic-based devices and thus, ultimately, the device performance. Here, the metal’s work function and the adsorbate’s electron affinity are the key factors that govern the electron transfer at the organic/metal interface. In our combined experimental and theoretical work, we demonstrate that the adsorbate’s orientation may also be decisive for the charge transfer. By thermal cycloreversion of diheptacene isomers, we manage to produce highly oriented monolayers of the rodlike, electron-acceptor molecule heptacene on a Cu(110) surface with molecules oriented either along or perpendicular to the close-packed metal rows. This is confirmed by scanning tunneling microscopy (STM) images as well as by angle-resolved ultraviolet photoemission spectroscopy (ARUPS). By utilizing photoemission tomography momentum maps, we show that the lowest unoccupied molecular orbital (LUMO) is fully occupied and also, the LUMO + 1 gets significantly filled when heptacene is oriented along the Cu rows. Conversely, for perpendicularly aligned heptacene, the molecular energy levels are shifted significantly toward the Fermi energy, preventing charge transfer to the LUMO + 1. These findings are fully confirmed by our density functional calculations and demonstrate the possibility to tune the charge transfer and level alignment at organic–metal interfaces through the adjustable molecular alignment.

Close

  • doi:10.1021/acs.jpcc.1c01306

Close

2020

12.

C. Metzger, M. Graus, M. Grimm, G. Zamborlini, V. Feyer, M. Schwendt, D. Lüftner, P. Puschnig, A. Schöll, F. Reinert

Plane-wave final state for photoemission from nonplanar molecules at a metal-organic interface Journal Article

In: Phys. Rev. B, vol. 101, iss. 16, pp. 165421, 2020.

Abstract | Links | BibTeX | Tags: DACH

@article{Metzger2020,
title = {Plane-wave final state for photoemission from nonplanar molecules at a metal-organic interface},
author = {C. Metzger and M. Graus and M. Grimm and G. Zamborlini and V. Feyer and M. Schwendt and D. Lüftner and P. Puschnig and A. Schöll and F. Reinert},
doi = {10.1103/PhysRevB.101.165421},
year = {2020},
date = {2020-04-01},
journal = {Phys. Rev. B},
volume = {101},
issue = {16},
pages = {165421},
publisher = {American Physical Society},
abstract = {In recent years, the method of orbital tomography has been a useful tool for the analysis of a variety of molecular systems. However, the underlying plane-wave final state has been largely expected to be applicable to planar molecules only. Here, we demonstrate on photoemission data from the molecule C60 adsorbed on Ag(110) that it can indeed be a valid approximation for truly three-dimensional molecules at a metal-organic interface. A comparison of the experimental data supported by density functional theory (DFT) calculations of the full interface and simulations of the photoemission process with a more exact final state enables the determination of the adsorption geometry and orientation of the C60 molecules in a monolayer on the Ag(110) surface. Additionally, charge transfer into the molecules is used to confirm the lifting in degeneracy of the t1u molecular orbitals as predicted by DFT calculations.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

In recent years, the method of orbital tomography has been a useful tool for the analysis of a variety of molecular systems. However, the underlying plane-wave final state has been largely expected to be applicable to planar molecules only. Here, we demonstrate on photoemission data from the molecule C60 adsorbed on Ag(110) that it can indeed be a valid approximation for truly three-dimensional molecules at a metal-organic interface. A comparison of the experimental data supported by density functional theory (DFT) calculations of the full interface and simulations of the photoemission process with a more exact final state enables the determination of the adsorption geometry and orientation of the C60 molecules in a monolayer on the Ag(110) surface. Additionally, charge transfer into the molecules is used to confirm the lifting in degeneracy of the t1u molecular orbitals as predicted by DFT calculations.

Close

  • doi:10.1103/PhysRevB.101.165421

Close

11.

N. Haag, D. Lüftner, F. Haag, J. Seidel, L. L. Kelly, G. Zamborlini, M. Jugovac, V. Feyer, M. Aeschlimann, P. Puschnig, M. Cinchetti, B. Stadtmüller

Signatures of an atomic crystal in the band structure of a C60 thin film Journal Article

In: Phys. Rev. B, vol. 101, iss. 16, pp. 165422, 2020.

Abstract | Links | BibTeX | Tags: DACH

@article{Haag2020,
title = {Signatures of an atomic crystal in the band structure of a C60 thin film},
author = {N. Haag and D. Lüftner and F. Haag and J. Seidel and L. L. Kelly and G. Zamborlini and M. Jugovac and V. Feyer and M. Aeschlimann and P. Puschnig and M. Cinchetti and B. Stadtmüller},
doi = {10.1103/PhysRevB.101.165422},
year = {2020},
date = {2020-04-01},
journal = {Phys. Rev. B},
volume = {101},
issue = {16},
pages = {165422},
publisher = {American Physical Society},
abstract = {Transport phenomena in molecular materials are intrinsically linked to the orbital character and the degree of localization of the valence states. Here we combine angle-resolved photoemission with photoemission tomography to determine the spatial distribution of all molecular states of the valence band structure of a C60 thin film. While the two most frontier valence states exhibit a strong band dispersion, the states at larger binding energies are characterized by distinct emission patterns in energy and momentum space. Our findings demonstrate the formation of an atomic crystal-like band structure in a molecular solid with delocalized π-like valence states and strongly localized σ states at larger binding energies.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Transport phenomena in molecular materials are intrinsically linked to the orbital character and the degree of localization of the valence states. Here we combine angle-resolved photoemission with photoemission tomography to determine the spatial distribution of all molecular states of the valence band structure of a C60 thin film. While the two most frontier valence states exhibit a strong band dispersion, the states at larger binding energies are characterized by distinct emission patterns in energy and momentum space. Our findings demonstrate the formation of an atomic crystal-like band structure in a molecular solid with delocalized π-like valence states and strongly localized σ states at larger binding energies.

Close

  • doi:10.1103/PhysRevB.101.165422

Close

10.

P. Hurdax, M. Hollerer, P. Puschnig, D. Lüftner, L. Egger, M. G. Ramsey, M. Sterrer

Controlling the Charge Transfer across Thin Dielectric Interlayers Journal Article

In: Adv. Mater. Interfaces, vol. 7, pp. 2000592, 2020.

Abstract | Links | BibTeX | Tags: DACH

@article{Hurdax2020,
title = {Controlling the Charge Transfer across Thin Dielectric Interlayers},
author = {P. Hurdax and M. Hollerer and P. Puschnig and D. Lüftner and L. Egger and M. G. Ramsey and M. Sterrer},
doi = {10.1002/admi.202000592},
year = {2020},
date = {2020-01-01},
journal = {Adv. Mater. Interfaces},
volume = {7},
pages = {2000592},
abstract = {Whether intentional or unintentional, thin dielectric interlayers can be found in technologies ranging from catalysis to organic electronics. While originally considered as passive decoupling layers, recently it has been shown that they can actively promote charge transfer from the underlying metal to adsorbates. This charging can have profound effects on the surface chemistry of atoms, atomic clusters, and molecules, their magnetic moments, and charge injection at the contacts of organic devices. Yet, controlled studies required to understand the charge transfer process in depth are still lacking. Here, a comprehensive analysis of the phenomenon of charge transfer using the atomically controlled system of pentacene on ultrathin MgO(100) films on Ag(100) is presented. It is shown that the charge transfer process is governed by the charged and uncharged molecular species with distinct energy levels in the first monolayer. The experimental approach applied in this work allows to observe and control their ratio through direct tuning of either the work function or the thickness of the dielectric interlayer.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Whether intentional or unintentional, thin dielectric interlayers can be found in technologies ranging from catalysis to organic electronics. While originally considered as passive decoupling layers, recently it has been shown that they can actively promote charge transfer from the underlying metal to adsorbates. This charging can have profound effects on the surface chemistry of atoms, atomic clusters, and molecules, their magnetic moments, and charge injection at the contacts of organic devices. Yet, controlled studies required to understand the charge transfer process in depth are still lacking. Here, a comprehensive analysis of the phenomenon of charge transfer using the atomically controlled system of pentacene on ultrathin MgO(100) films on Ag(100) is presented. It is shown that the charge transfer process is governed by the charged and uncharged molecular species with distinct energy levels in the first monolayer. The experimental approach applied in this work allows to observe and control their ratio through direct tuning of either the work function or the thickness of the dielectric interlayer.

Close

  • doi:10.1002/admi.202000592

Close

9.

H. M. Sturmeit, I. Cojocariu, M. Jugovac, A. Cossaro, A. Verdini, L. Floreano, A. Sala, G. Comelli, S. Moro, M. Stredansky, M. Corva, E. Vesselli, P. Puschnig, C. M. Schneider, V. Feyer, G. Zamborlini, M. Cinchetti

Molecular anchoring stabilizes low valence Ni(I)TPP on copper against thermally induced chemical changes Journal Article

In: J. Mater. Chem. C, vol. 8, pp. 8876-8886, 2020.

Abstract | Links | BibTeX | Tags: DACH

@article{Sturmeit2020,
title = {Molecular anchoring stabilizes low valence Ni(I)TPP on copper against thermally induced chemical changes},
author = {H. M. Sturmeit and I. Cojocariu and M. Jugovac and A. Cossaro and A. Verdini and L. Floreano and A. Sala and G. Comelli and S. Moro and M. Stredansky and M. Corva and E. Vesselli and P. Puschnig and C. M. Schneider and V. Feyer and G. Zamborlini and M. Cinchetti},
doi = {10.1039/D0TC00946F},
year = {2020},
date = {2020-01-01},
journal = {J. Mater. Chem. C},
volume = {8},
pages = {8876-8886},
abstract = {Many applications of molecular layers deposited on metal surfaces, ranging from single-atom catalysis to on-surface magnetochemistry and biosensing, rely on the use of thermal cycles to regenerate the pristine properties of the system. Thus, understanding the microscopic origin behind the thermal stability of organic/metal interfaces is fundamental for engineering reliable organic-based devices. Here, we study nickel porphyrin molecules on a copper surface as an archetypal system containing a metal center whose oxidation state can be controlled through the interaction with the metal substrate. We demonstrate that the strong molecule–surface interaction, followed by charge transfer at the interface, plays a fundamental role in the thermal stability of the layer by rigidly anchoring the porphyrin to the substrate. Upon thermal treatment, the molecules undergo an irreversible transition at 420 K, which is associated with an increase of the charge transfer from the substrate, mostly localized on the phenyl substituents, and a downward tilting of the latters without any chemical modification.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Many applications of molecular layers deposited on metal surfaces, ranging from single-atom catalysis to on-surface magnetochemistry and biosensing, rely on the use of thermal cycles to regenerate the pristine properties of the system. Thus, understanding the microscopic origin behind the thermal stability of organic/metal interfaces is fundamental for engineering reliable organic-based devices. Here, we study nickel porphyrin molecules on a copper surface as an archetypal system containing a metal center whose oxidation state can be controlled through the interaction with the metal substrate. We demonstrate that the strong molecule–surface interaction, followed by charge transfer at the interface, plays a fundamental role in the thermal stability of the layer by rigidly anchoring the porphyrin to the substrate. Upon thermal treatment, the molecules undergo an irreversible transition at 420 K, which is associated with an increase of the charge transfer from the substrate, mostly localized on the phenyl substituents, and a downward tilting of the latters without any chemical modification.

Close

  • doi:10.1039/D0TC00946F

Close

8.

A. Haags, A. Reichmann, Q. Fan, L. Egger, H. Kirschner, T. Naumann, S. Werner, T. Vollgraff, J. Sundermeyer, L. Eschmann, X. Yang, D. Brandstetter, F. C. Bocquet, G. Koller, A. Gottwald, M. Richter, M. G. Ramsey, M. Rohlfing, P. Puschnig, J. M. Gottfried, S. Soubatch, F. S. Tautz

Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization Journal Article

In: ACS Nano, vol. 14, pp. 15766-15775, 2020.

Abstract | Links | BibTeX | Tags: DACH

@article{Haags2020,
title = {Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization},
author = {A. Haags and A. Reichmann and Q. Fan and L. Egger and H. Kirschner and T. Naumann and S. Werner and T. Vollgraff and J. Sundermeyer and L. Eschmann and X. Yang and D. Brandstetter and F. C. Bocquet and G. Koller and A. Gottwald and M. Richter and M. G. Ramsey and M. Rohlfing and P. Puschnig and J. M. Gottfried and S. Soubatch and F. S. Tautz},
doi = {10.1021/acsnano.0c06798},
year = {2020},
date = {2020-01-01},
journal = {ACS Nano},
volume = {14},
pages = {15766-15775},
abstract = {We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.

Close

  • doi:10.1021/acsnano.0c06798

Close

7.

P. Hurdax, M. Hollerer, L. Egger, G. Koller, X. Yang, A. Haags, S. Soubatch, F. S. Tautz, M. Richter, A. Gottwald, P. Puschnig, M. Sterrer, M. G. Ramsey

Controlling the electronic and physical coupling on dielectric thin films Journal Article

In: Beilstein J. Nanotechnol., vol. 11, pp. 1492-1503, 2020.

Abstract | Links | BibTeX | Tags: DACH

@article{Hurdax2020a,
title = {Controlling the electronic and physical coupling on dielectric thin films},
author = {P. Hurdax and M. Hollerer and L. Egger and G. Koller and X. Yang and A. Haags and S. Soubatch and F. S. Tautz and M. Richter and A. Gottwald and P. Puschnig and M. Sterrer and M. G. Ramsey},
doi = {10.3762/bjnano.11.132},
year = {2020},
date = {2020-01-01},
journal = {Beilstein J. Nanotechnol.},
volume = {11},
pages = {1492-1503},
abstract = {Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.

Close

  • doi:10.3762/bjnano.11.132

Close

2019

6.

M. Hollerer, D. Prochinig, P. Puschnig, E. Carrasco, H. -J. Freund, M. Sterrer

Scanning Tunneling Microscopy of the Ordered Water Monolayer on MgO(001)/Ag(001) Ultrathin Films Journal Article

In: J. Phys. Chem. C, vol. 123, pp. 3711-3718, 2019.

Abstract | Links | BibTeX | Tags: DACH

@article{Hollerer2019,
title = {Scanning Tunneling Microscopy of the Ordered Water Monolayer on MgO(001)/Ag(001) Ultrathin Films},
author = {M. Hollerer and D. Prochinig and P. Puschnig and E. Carrasco and H. -J. Freund and M. Sterrer},
doi = {10.1021/acs.jpcc.8b12256},
year = {2019},
date = {2019-01-01},
journal = {J. Phys. Chem. C},
volume = {123},
pages = {3711-3718},
abstract = {Two-dimensionally ordered monolayers of water on MgO(001) have been extensively studied in the past using diffraction and spectroscopic and computational methods, but direct microscopic imaging has not been reported so far. Here, we present a scanning tunneling microscopy (STM) study, supported by infrared and X-ray photoelectron spectroscopy, of the c(4 × 2)-10H2O and p(3 × 2)-6H2O structures prepared on ultrathin MgO(001)/Ag(001) films. For the applied tunneling conditions, the contrast in the STM images originates from the hydroxyl groups, which result from water dissociation within the monolayer. The observed periodicities match the structures for the energetically most favorable c(4 × 2) and p(3 × 2) monolayer phases obtained from density functional calculations. Although the molecular water species within the monolayers, which are essential for the stabilization of the hydroxyl groups, could not be resolved, the STM results presented in this study provide further confirmation of the predicted structural models of the c(4 × 2)-10H2O and p(3 × 2)-6H2O monolayers.},
keywords = {DACH},
pubstate = {published},
tppubtype = {article}
}

Close

Two-dimensionally ordered monolayers of water on MgO(001) have been extensively studied in the past using diffraction and spectroscopic and computational methods, but direct microscopic imaging has not been reported so far. Here, we present a scanning tunneling microscopy (STM) study, supported by infrared and X-ray photoelectron spectroscopy, of the c(4 × 2)-10H2O and p(3 × 2)-6H2O structures prepared on ultrathin MgO(001)/Ag(001) films. For the applied tunneling conditions, the contrast in the STM images originates from the hydroxyl groups, which result from water dissociation within the monolayer. The observed periodicities match the structures for the energetically most favorable c(4 × 2) and p(3 × 2) monolayer phases obtained from density functional calculations. Although the molecular water species within the monolayers, which are essential for the stabilization of the hydroxyl groups, could not be resolved, the STM results presented in this study provide further confirmation of the predicted structural models of the c(4 × 2)-10H2O and p(3 × 2)-6H2O monolayers.

Close

  • doi:10.1021/acs.jpcc.8b12256

Close

35 entries « ‹ 1 of 2 › »
© Copyright - Orbital Tomography
  • Legal Notice
  • Privacy Policy
Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlySettings

Cookie and Privacy Settings



How we use cookies

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

Other external services

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:

Google Map Settings:

Google reCaptcha Settings:

Vimeo and Youtube video embeds:

Privacy Policy

You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

Privacy Policy
Accept settingsHide notification only