Orbital Tomography
  • Home
  • Publications
  • People
  • Menu Menu

Dr. Thomas Georg Boné » People

Active members
  • Go back to directory.
  • Add to Address Book.

Dr. Thomas Georg Boné

PhD student Karl-Franzens-Universität GrazInstitute of Physics – Surface Science
Email: gubznf.obar@hav-tenm.ngINTERNET Website: Surface Science

Biographical Info

2022

4.

P. Hurdax, C. S. Kern, T. G. Boné, A. Haags, M. Hollerer, L. Egger, X. Yang, H. Kirschner, A. Gottwald, M. Richter, F. C. Bocquet, S. Soubatch, G. Koller, F. S. Tautz, M. Sterrer, P. Puschnig, M. G. Ramsey

Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography Journal Article

In: ACS Nano, vol. 16, pp. 17435-17443, 2022.

Abstract | Links | BibTeX

@article{Hurdax2022,
title = {Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography},
author = {P. Hurdax and C. S. Kern and T. G. Boné and A. Haags and M. Hollerer and L. Egger and X. Yang and H. Kirschner and A. Gottwald and M. Richter and F. C. Bocquet and S. Soubatch and G. Koller and F. S. Tautz and M. Sterrer and P. Puschnig and M. G. Ramsey},
doi = {10.1021/acsnano.2c08631},
year = {2022},
date = {2022-01-01},
journal = {ACS Nano},
volume = {16},
pages = {17435-17443},
abstract = {Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.

Close

  • doi:10.1021/acsnano.2c08631

Close

3.

F. Presel, C. S. Kern, T. G. Boné, F. Schwarz, P. Puschnig, M. G. Ramsey, M. Sterrer

Charge and adsorption height dependence of the self-metalation of porphyrins on ultrathin MgO(001) films Journal Article

In: Phys. Chem. Chem. Phys., vol. 24, pp. 28540-28547, 2022.

Abstract | Links | BibTeX

@article{Presel2022,
title = {Charge and adsorption height dependence of the self-metalation of porphyrins on ultrathin MgO(001) films},
author = {F. Presel and C. S. Kern and T. G. Boné and F. Schwarz and P. Puschnig and M. G. Ramsey and M. Sterrer},
doi = {10.1039/D2CP04688A},
year = {2022},
date = {2022-01-01},
journal = {Phys. Chem. Chem. Phys.},
volume = {24},
pages = {28540-28547},
abstract = {We have experimentally determined the adsorption structure, charge state, and metalation state of porphin, the fundamental building block of porphyrins, on ultrathin Ag(001)-supported MgO(001) films by scanning tunneling microscopy and photoemission spectroscopy, supported by calculations based on density functional theory. By tuning the substrate work function to values below and above the critical work function for charging, we succeeded in the preparation of 2H-P monolayers which contain negatively charged and uncharged molecules. Significantly, it is shown that the porphin molecules self-metalate at room temperature, forming the corresponding Mg-porphin, irrespective of their charge state. This is in contrast to self-metalation of tetraphenyl porphyrin (TPP), which occurs on planar MgO(001) only if the molecules are negatively charged. The different reactivity is explained by the reduced molecule-substrate distance of the planar porphin molecule compared to the bulkier TPP. The results of this study shed light on the mechanism of porphyrin self-metalation on oxides and highlight the role of the adsorption geometry on the chemical reactivity.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

We have experimentally determined the adsorption structure, charge state, and metalation state of porphin, the fundamental building block of porphyrins, on ultrathin Ag(001)-supported MgO(001) films by scanning tunneling microscopy and photoemission spectroscopy, supported by calculations based on density functional theory. By tuning the substrate work function to values below and above the critical work function for charging, we succeeded in the preparation of 2H-P monolayers which contain negatively charged and uncharged molecules. Significantly, it is shown that the porphin molecules self-metalate at room temperature, forming the corresponding Mg-porphin, irrespective of their charge state. This is in contrast to self-metalation of tetraphenyl porphyrin (TPP), which occurs on planar MgO(001) only if the molecules are negatively charged. The different reactivity is explained by the reduced molecule-substrate distance of the planar porphin molecule compared to the bulkier TPP. The results of this study shed light on the mechanism of porphyrin self-metalation on oxides and highlight the role of the adsorption geometry on the chemical reactivity.

Close

  • doi:10.1039/D2CP04688A

Close

2021

2.

T. G. Boné, A. Windischbacher, M. S. Sättele, K. Greulich, L. Egger, T. Jauk, F. Lackner, H. F. Bettinger, H. Peisert, T. Chassé, M. G. Ramsey, M. Sterrer, G. Koller, P. Puschnig

Demonstrating the Impact of the Adsorbate Orientation on the Charge Transfer at Organic-Metal Interfaces Journal Article

In: J. Phys. Chem. C, vol. 125, pp. 9129-9137, 2021.

Abstract | Links | BibTeX

@article{Bone2021,
title = {Demonstrating the Impact of the Adsorbate Orientation on the Charge Transfer at Organic-Metal Interfaces},
author = {T. G. Boné and A. Windischbacher and M. S. Sättele and K. Greulich and L. Egger and T. Jauk and F. Lackner and H. F. Bettinger and H. Peisert and T. Chassé and M. G. Ramsey and M. Sterrer and G. Koller and P. Puschnig},
doi = {10.1021/acs.jpcc.1c01306},
year = {2021},
date = {2021-01-01},
journal = {J. Phys. Chem. C},
volume = {125},
pages = {9129-9137},
abstract = {Charge-transfer processes at molecule–metal interfaces play a key role in tuning the charge injection properties in organic-based devices and thus, ultimately, the device performance. Here, the metal’s work function and the adsorbate’s electron affinity are the key factors that govern the electron transfer at the organic/metal interface. In our combined experimental and theoretical work, we demonstrate that the adsorbate’s orientation may also be decisive for the charge transfer. By thermal cycloreversion of diheptacene isomers, we manage to produce highly oriented monolayers of the rodlike, electron-acceptor molecule heptacene on a Cu(110) surface with molecules oriented either along or perpendicular to the close-packed metal rows. This is confirmed by scanning tunneling microscopy (STM) images as well as by angle-resolved ultraviolet photoemission spectroscopy (ARUPS). By utilizing photoemission tomography momentum maps, we show that the lowest unoccupied molecular orbital (LUMO) is fully occupied and also, the LUMO + 1 gets significantly filled when heptacene is oriented along the Cu rows. Conversely, for perpendicularly aligned heptacene, the molecular energy levels are shifted significantly toward the Fermi energy, preventing charge transfer to the LUMO + 1. These findings are fully confirmed by our density functional calculations and demonstrate the possibility to tune the charge transfer and level alignment at organic–metal interfaces through the adjustable molecular alignment.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Charge-transfer processes at molecule–metal interfaces play a key role in tuning the charge injection properties in organic-based devices and thus, ultimately, the device performance. Here, the metal’s work function and the adsorbate’s electron affinity are the key factors that govern the electron transfer at the organic/metal interface. In our combined experimental and theoretical work, we demonstrate that the adsorbate’s orientation may also be decisive for the charge transfer. By thermal cycloreversion of diheptacene isomers, we manage to produce highly oriented monolayers of the rodlike, electron-acceptor molecule heptacene on a Cu(110) surface with molecules oriented either along or perpendicular to the close-packed metal rows. This is confirmed by scanning tunneling microscopy (STM) images as well as by angle-resolved ultraviolet photoemission spectroscopy (ARUPS). By utilizing photoemission tomography momentum maps, we show that the lowest unoccupied molecular orbital (LUMO) is fully occupied and also, the LUMO + 1 gets significantly filled when heptacene is oriented along the Cu rows. Conversely, for perpendicularly aligned heptacene, the molecular energy levels are shifted significantly toward the Fermi energy, preventing charge transfer to the LUMO + 1. These findings are fully confirmed by our density functional calculations and demonstrate the possibility to tune the charge transfer and level alignment at organic–metal interfaces through the adjustable molecular alignment.

Close

  • doi:10.1021/acs.jpcc.1c01306

Close

2019

1.

T. G. Boné

Organic Molecules on Alkali Halide Interlayers - A Characterisation of Energy Levels and Charge Transfer Masters Thesis

2019.

BibTeX

@mastersthesis{Bone2019,
title = {Organic Molecules on Alkali Halide Interlayers - A Characterisation of Energy Levels and Charge Transfer},
author = {T. G. Boné},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}

Close

Alumni
© Copyright - Orbital Tomography
  • Legal Notice
  • Privacy Policy
Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlySettings

Cookie and Privacy Settings



How we use cookies

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

Other external services

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:

Google Map Settings:

Google reCaptcha Settings:

Vimeo and Youtube video embeds:

Privacy Policy

You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

Privacy Policy
Accept settingsHide notification only