Orbital Tomography
  • Home
  • Publications
  • People
  • Menu Menu

Dr. Serguei Soubatch (Sergey Subach) » People

Active members
  • Go back to directory.
  • Add to Address Book.

Dr. Serguei Soubatch (Sergey Subach)

Principal Investigator Forschungszentrum JülichQuantum Nanoscience (PGI-3)
Email: f.fhonpu@sm-whryvpu.qrINTERNET Website: Quantum Nanoscience (PGI-3) ORCID: 0000-0002-1455-0260

Biographical Info

2022

24.

P. Hurdax, C. S. Kern, T. G. Boné, A. Haags, M. Hollerer, L. Egger, X. Yang, H. Kirschner, A. Gottwald, M. Richter, F. C. Bocquet, S. Soubatch, G. Koller, F. S. Tautz, M. Sterrer, P. Puschnig, M. G. Ramsey

Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography Journal Article

In: ACS Nano, vol. 16, pp. 17435-17443, 2022.

Abstract | Links | BibTeX

@article{Hurdax2022,
title = {Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography},
author = {P. Hurdax and C. S. Kern and T. G. Boné and A. Haags and M. Hollerer and L. Egger and X. Yang and H. Kirschner and A. Gottwald and M. Richter and F. C. Bocquet and S. Soubatch and G. Koller and F. S. Tautz and M. Sterrer and P. Puschnig and M. G. Ramsey},
doi = {10.1021/acsnano.2c08631},
year = {2022},
date = {2022-01-01},
journal = {ACS Nano},
volume = {16},
pages = {17435-17443},
abstract = {Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.

Close

  • doi:10.1021/acsnano.2c08631

Close

23.

X. Yang, M. Jugovac, G. Zamborlini, V. Feyer, G. Koller, P. Puschnig, S. Soubatch, M. G. Ramsey, F. S. Tautz

Momentum-selective orbital hybridization Journal Article

In: Nat. Commun., vol. 13, pp. 5148, 2022.

Abstract | Links | BibTeX

@article{Yang2022,
title = {Momentum-selective orbital hybridization},
author = {X. Yang and M. Jugovac and G. Zamborlini and V. Feyer and G. Koller and P. Puschnig and S. Soubatch and M. G. Ramsey and F. S. Tautz},
doi = {10.1038/s41467-022-32643-z},
year = {2022},
date = {2022-01-01},
journal = {Nat. Commun.},
volume = {13},
pages = {5148},
abstract = {When a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too. Here, we report photoemission orbital tomography measurements of hybrid orbitals that emerge from molecular orbitals at a molecule-on-metal interface. We find that in the hybrid orbitals only those partial waves of the original orbital survive which match the metal band structure. Moreover, we find that the conversion of the metal’s surface state into a hybrid interface state is also governed by momentum matching constraints. Our experiments demonstrate the possibility to measure hybridisation momentum-selectively, thereby enabling deep insights into the complicated interplay of bulk states, surface states, and molecular orbitals in the formation of the electronic interface structure at molecule-on-metal hybrid interfaces.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

When a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too. Here, we report photoemission orbital tomography measurements of hybrid orbitals that emerge from molecular orbitals at a molecule-on-metal interface. We find that in the hybrid orbitals only those partial waves of the original orbital survive which match the metal band structure. Moreover, we find that the conversion of the metal’s surface state into a hybrid interface state is also governed by momentum matching constraints. Our experiments demonstrate the possibility to measure hybridisation momentum-selectively, thereby enabling deep insights into the complicated interplay of bulk states, surface states, and molecular orbitals in the formation of the electronic interface structure at molecule-on-metal hybrid interfaces.

Close

  • doi:10.1038/s41467-022-32643-z

Close

22.

M. S. Sättele, A. Windischbacher, K. Greulich, L. Egger, A. Haags, H. Kirschner, R. Ovsyannikov, E. Giangrisostomi, A. Gottwald, M. Richter, S. Soubatch, F. S. Tautz, M. G. Ramsey, P. Puschnig, G. Koller, H. F. Bettinger, T. Chassé, H. Peisert

Hexacene on Cu(110) and Ag(110): Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer Journal Article

In: J. Phys. Chem. C, vol. 126, pp. 5036-5045, 2022.

Abstract | Links | BibTeX

@article{Saettele2022,
title = {Hexacene on Cu(110) and Ag(110): Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer},
author = {M. S. Sättele and A. Windischbacher and K. Greulich and L. Egger and A. Haags and H. Kirschner and R. Ovsyannikov and E. Giangrisostomi and A. Gottwald and M. Richter and S. Soubatch and F. S. Tautz and M. G. Ramsey and P. Puschnig and G. Koller and H. F. Bettinger and T. Chassé and H. Peisert},
doi = {10.1021/acs.jpcc.2c00081},
year = {2022},
date = {2022-01-01},
journal = {J. Phys. Chem. C},
volume = {126},
pages = {5036-5045},
abstract = {Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).

Close

  • doi:10.1021/acs.jpcc.2c00081

Close

21.

A. Haags, X. Yang, L. Egger, D. Brandstetter, H. Kirschner, F. C. Bocquet, G. Koller, A. Gottwald, M. Richter, J. M. Gottfried, M. G. Ramsey, P. Puschnig, S. Soubatch, F. S. Tautz

Momentum-space imaging of σ-orbitals for chemical analysis Journal Article

In: Sci. Adv., vol. 8, pp. eabn0819, 2022.

Abstract | Links | BibTeX

@article{Haags2021,
title = {Momentum-space imaging of σ-orbitals for chemical analysis},
author = {A. Haags and X. Yang and L. Egger and D. Brandstetter and H. Kirschner and F. C. Bocquet and G. Koller and A. Gottwald and M. Richter and J. M. Gottfried and M. G. Ramsey and P. Puschnig and S. Soubatch and F. S. Tautz},
doi = {10.1126/sciadv.abn0819},
year = {2022},
date = {2022-01-01},
journal = {Sci. Adv.},
volume = {8},
pages = {eabn0819},
abstract = {Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.

Close

  • doi:10.1126/sciadv.abn0819

Close

2021

20.

R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, U. Höfer

Tracing orbital images on ultrafast time scales Journal Article

In: Science, vol. 371, pp. 1056-1059, 2021.

Abstract | Links | BibTeX

@article{Wallauer2020,
title = {Tracing orbital images on ultrafast time scales},
author = {R. Wallauer and M. Raths and K. Stallberg and L. Münster and D. Brandstetter and X. Yang and J. Güdde and P. Puschnig and S. Soubatch and C. Kumpf and F. C. Bocquet and F. S. Tautz and U. Höfer},
doi = {10.1126/science.abf3286},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {Science},
volume = {371},
pages = {1056-1059},
abstract = {Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.

Close

  • doi:10.1126/science.abf3286

Close

19.

M. S. Sättele, A. Windischbacher, L. Egger, A. Haags, P. Hurdax, H. Kirschner, A. Gottwald, M. Richter, F. C. Bocquet, S. Soubatch, F. S. Tautz, H. F. Bettinger, H. Peisert, T. Chassé, M. G. Ramsey, P. Puschnig, G. Koller

Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110) Journal Article

In: J. Phys. Chem. C, vol. 125, pp. 2918-2925, 2021.

Abstract | Links | BibTeX

@article{Saettele2020,
title = {Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)},
author = {M. S. Sättele and A. Windischbacher and L. Egger and A. Haags and P. Hurdax and H. Kirschner and A. Gottwald and M. Richter and F. C. Bocquet and S. Soubatch and F. S. Tautz and H. F. Bettinger and H. Peisert and T. Chassé and M. G. Ramsey and P. Puschnig and G. Koller},
doi = {10.1021/acs.jpcc.0c09062},
year = {2021},
date = {2021-01-01},
journal = {J. Phys. Chem. C},
volume = {125},
pages = {2918-2925},
abstract = {Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces.

Close

  • doi:10.1021/acs.jpcc.0c09062

Close

18.

L. Egger, M. Hollerer, C. S. Kern, H. Herrmann, P. Hurdax, A. Haags, X. Yang, A. Gottwald, M. Richter, S. Soubatch, F. S. Tautz, G. Koller, P. Puschnig, M. G. Ramsey, M. Sterrer

Charge-promoted self-metalation of porphyrins on an oxide surface Journal Article

In: Angew. Chem. Int. Ed., vol. 60, pp. 5078-5082, 2021.

Abstract | Links | BibTeX

@article{Egger2020,
title = {Charge-promoted self-metalation of porphyrins on an oxide surface},
author = {L. Egger and M. Hollerer and C. S. Kern and H. Herrmann and P. Hurdax and A. Haags and X. Yang and A. Gottwald and M. Richter and S. Soubatch and F. S. Tautz and G. Koller and P. Puschnig and M. G. Ramsey and M. Sterrer},
doi = {10.1002/anie.202015187},
year = {2021},
date = {2021-01-01},
journal = {Angew. Chem. Int. Ed.},
volume = {60},
pages = {5078-5082},
abstract = {Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.

Close

  • doi:10.1002/anie.202015187

Close

2020

17.

P. Hurdax, M. Hollerer, L. Egger, G. Koller, X. Yang, A. Haags, S. Soubatch, F. S. Tautz, M. Richter, A. Gottwald, P. Puschnig, M. Sterrer, M. G. Ramsey

Controlling the electronic and physical coupling on dielectric thin films Journal Article

In: Beilstein J. Nanotechnol., vol. 11, pp. 1492-1503, 2020.

Abstract | Links | BibTeX

@article{Hurdax2020a,
title = {Controlling the electronic and physical coupling on dielectric thin films},
author = {P. Hurdax and M. Hollerer and L. Egger and G. Koller and X. Yang and A. Haags and S. Soubatch and F. S. Tautz and M. Richter and A. Gottwald and P. Puschnig and M. Sterrer and M. G. Ramsey},
doi = {10.3762/bjnano.11.132},
year = {2020},
date = {2020-01-01},
journal = {Beilstein J. Nanotechnol.},
volume = {11},
pages = {1492-1503},
abstract = {Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.

Close

  • doi:10.3762/bjnano.11.132

Close

16.

A. Haags, A. Reichmann, Q. Fan, L. Egger, H. Kirschner, T. Naumann, S. Werner, T. Vollgraff, J. Sundermeyer, L. Eschmann, X. Yang, D. Brandstetter, F. C. Bocquet, G. Koller, A. Gottwald, M. Richter, M. G. Ramsey, M. Rohlfing, P. Puschnig, J. M. Gottfried, S. Soubatch, F. S. Tautz

Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization Journal Article

In: ACS Nano, vol. 14, pp. 15766-15775, 2020.

Abstract | Links | BibTeX

@article{Haags2020,
title = {Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization},
author = {A. Haags and A. Reichmann and Q. Fan and L. Egger and H. Kirschner and T. Naumann and S. Werner and T. Vollgraff and J. Sundermeyer and L. Eschmann and X. Yang and D. Brandstetter and F. C. Bocquet and G. Koller and A. Gottwald and M. Richter and M. G. Ramsey and M. Rohlfing and P. Puschnig and J. M. Gottfried and S. Soubatch and F. S. Tautz},
doi = {10.1021/acsnano.0c06798},
year = {2020},
date = {2020-01-01},
journal = {ACS Nano},
volume = {14},
pages = {15766-15775},
abstract = {We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.

Close

  • doi:10.1021/acsnano.0c06798

Close

2019

15.

X. Yang, L. Egger, J. Fuchsberger, M. Unzog, D. Lüftner, F. Hajek, P. Hurdax, M. Jugovac, G. Zamborlini, V. Feyer, G. Koller, P. Puschnig, F. S. Tautz, M. G. Ramsey, S. Soubatch

Coexisting Charge States in a Unary Organic Monolayer Film on a Metal Journal Article

In: J. Phys. Chem. Lett., vol. 10, pp. 6438-6445, 2019.

Abstract | Links | BibTeX

@article{Yang2019a,
title = {Coexisting Charge States in a Unary Organic Monolayer Film on a Metal},
author = {X. Yang and L. Egger and J. Fuchsberger and M. Unzog and D. Lüftner and F. Hajek and P. Hurdax and M. Jugovac and G. Zamborlini and V. Feyer and G. Koller and P. Puschnig and F. S. Tautz and M. G. Ramsey and S. Soubatch},
doi = {10.1021/acs.jpclett.9b02231},
year = {2019},
date = {2019-01-01},
journal = {J. Phys. Chem. Lett.},
volume = {10},
pages = {6438-6445},
abstract = {The electronic and geometric structures of tetracene films on Ag(110) and Cu(110) have been studied with photoemission tomography and compared to that of pentacene. Despite similar energy level alignment of the two oligoacenes on these surfaces revealed by conventional ultraviolet photoelectron spectroscopy, the momentum-space resolved photoemission tomography reveals a significant difference in both structural and electronic properties of tetracene and pentacene films. Particularly, the saturated monolayer of tetracene on Ag(110) is found to consist of two molecular species that, despite having the same orientation, are electronically very different—while one molecule remains neutral, another is charged because of electron donation from the substrate.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

The electronic and geometric structures of tetracene films on Ag(110) and Cu(110) have been studied with photoemission tomography and compared to that of pentacene. Despite similar energy level alignment of the two oligoacenes on these surfaces revealed by conventional ultraviolet photoelectron spectroscopy, the momentum-space resolved photoemission tomography reveals a significant difference in both structural and electronic properties of tetracene and pentacene films. Particularly, the saturated monolayer of tetracene on Ag(110) is found to consist of two molecular species that, despite having the same orientation, are electronically very different—while one molecule remains neutral, another is charged because of electron donation from the substrate.

Close

  • doi:10.1021/acs.jpclett.9b02231

Close

14.

X. Yang, L. Egger, P. Hurdax, H. Kaser, D. Lüftner, F. C. Bocquet, G. Koller, A. Gottwald, P. Tegeder, M. Richter, M. G. Ramsey, P. Puschnig, S. Soubatch, F. S. Tautz

Identifying surface reaction intermediates with photoemission tomography Journal Article

In: Nat. Commun., vol. 10, pp. 3189, 2019.

Abstract | Links | BibTeX

@article{Yang2019,
title = {Identifying surface reaction intermediates with photoemission tomography},
author = {X. Yang and L. Egger and P. Hurdax and H. Kaser and D. Lüftner and F. C. Bocquet and G. Koller and A. Gottwald and P. Tegeder and M. Richter and M. G. Ramsey and P. Puschnig and S. Soubatch and F. S. Tautz},
doi = {10.1038/s41467-019-11133-9},
year = {2019},
date = {2019-01-01},
journal = {Nat. Commun.},
volume = {10},
pages = {3189},
abstract = {The determination of reaction pathways and the identification of reaction intermediates are key issues in chemistry. Surface reactions are particularly challenging, since many methods of analytical chemistry are inapplicable at surfaces. Recently, atomic force microscopy has been employed to identify surface reaction intermediates. While providing an excellent insight into the molecular backbone structure, atomic force microscopy is less conclusive about the molecular periphery, where adsorbates tend to react with the substrate. Here we show that photoemission tomography is extremely sensitive to the character of the frontier orbitals. Specifically, hydrogen abstraction at the molecular periphery is easily detected, and the precise nature of the reaction intermediates can be determined. This is illustrated with the thermally induced reaction of dibromo-bianthracene to graphene which is shown to proceed via a fully hydrogenated bisanthene intermediate. We anticipate that photoemission tomography will become a powerful companion to other techniques in the study of surface reaction pathways.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

The determination of reaction pathways and the identification of reaction intermediates are key issues in chemistry. Surface reactions are particularly challenging, since many methods of analytical chemistry are inapplicable at surfaces. Recently, atomic force microscopy has been employed to identify surface reaction intermediates. While providing an excellent insight into the molecular backbone structure, atomic force microscopy is less conclusive about the molecular periphery, where adsorbates tend to react with the substrate. Here we show that photoemission tomography is extremely sensitive to the character of the frontier orbitals. Specifically, hydrogen abstraction at the molecular periphery is easily detected, and the precise nature of the reaction intermediates can be determined. This is illustrated with the thermally induced reaction of dibromo-bianthracene to graphene which is shown to proceed via a fully hydrogenated bisanthene intermediate. We anticipate that photoemission tomography will become a powerful companion to other techniques in the study of surface reaction pathways.

Close

  • doi:10.1038/s41467-019-11133-9

Close

13.

L. Egger, B. Kollmann, P. Hurdax, D. Lüftner, X. Yang, S. Weiß, A. Gottwald, M. Richter, G. Koller, S. Soubatch, F. S. Tautz, P. Puschnig, M. G. Ramsey

Can photoemission tomography be useful for small, strongly-interacting adsorbate systems? Journal Article

In: New J. Phys., vol. 21, pp. 043003, 2019.

Abstract | Links | BibTeX

@article{Egger2018,
title = {Can photoemission tomography be useful for small, strongly-interacting adsorbate systems?},
author = {L. Egger and B. Kollmann and P. Hurdax and D. Lüftner and X. Yang and S. Weiß and A. Gottwald and M. Richter and G. Koller and S. Soubatch and F. S. Tautz and P. Puschnig and M. G. Ramsey},
doi = {10.1088/1367-2630/ab0781},
year = {2019},
date = {2019-01-01},
journal = {New J. Phys.},
volume = {21},
pages = {043003},
abstract = {Molecular orbital tomography, also termed photoemission tomography, which considers the final state as a simple plane wave, has been very successful in describing the photoemisson distribution of large adsorbates on noble metal surfaces. Here, following a suggestion by Bradshaw and Woodruff (2015 New J. Phys. 17 013033), we consider a small and strongly-interacting system, benzene adsorbed on palladium (110), to consider the extent of the problems that can arise with the final state simplification. Our angle-resolved photoemission experiments, supported by density functional theory calculations, substantiate and refine the previously determined adsorption geometry and reveal an energetic splitting of the frontier π-orbital due to a symmetry breaking which has remained unnoticed before. We find that, despite the small size of benzene and the comparably strong interaction with palladium, the overall appearance of the photoemission angular distributions can basically be understood within a plane wave final state approximation and yields a deeper understanding of the electronic structure of the interface. There are, however, noticeable deviations between measured and simulated angular patterns which we ascribe to molecule-substrate interactions and effects beyond a plane-wave final state description.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Molecular orbital tomography, also termed photoemission tomography, which considers the final state as a simple plane wave, has been very successful in describing the photoemisson distribution of large adsorbates on noble metal surfaces. Here, following a suggestion by Bradshaw and Woodruff (2015 New J. Phys. 17 013033), we consider a small and strongly-interacting system, benzene adsorbed on palladium (110), to consider the extent of the problems that can arise with the final state simplification. Our angle-resolved photoemission experiments, supported by density functional theory calculations, substantiate and refine the previously determined adsorption geometry and reveal an energetic splitting of the frontier π-orbital due to a symmetry breaking which has remained unnoticed before. We find that, despite the small size of benzene and the comparably strong interaction with palladium, the overall appearance of the photoemission angular distributions can basically be understood within a plane wave final state approximation and yields a deeper understanding of the electronic structure of the interface. There are, however, noticeable deviations between measured and simulated angular patterns which we ascribe to molecule-substrate interactions and effects beyond a plane-wave final state description.

Close

  • doi:10.1088/1367-2630/ab0781

Close

2018

12.

X. Yang, I. Krieger, D. Lüftner, S. Weiß, T. Heepenstrick, M. Hollerer, P. Hurdax, G. Koller, M. Sokolowski, P. Puschnig, M. G. Ramsey, F. S. Tautz, S. Soubatch

On the decoupling of molecules at metal surfaces Journal Article

In: Chem. Commun., vol. 54, pp. 9039-9042, 2018.

Abstract | Links | BibTeX

@article{Yang2018,
title = {On the decoupling of molecules at metal surfaces},
author = {X. Yang and I. Krieger and D. Lüftner and S. Weiß and T. Heepenstrick and M. Hollerer and P. Hurdax and G. Koller and M. Sokolowski and P. Puschnig and M. G. Ramsey and F. S. Tautz and S. Soubatch},
doi = {10.1039/C8CC03334J},
year = {2018},
date = {2018-01-01},
urldate = {2018-01-01},
journal = {Chem. Commun.},
volume = {54},
pages = {9039-9042},
abstract = {We report a method to achieve physical and electronic decoupling of organic molecules from a metal surface. Oxygen adsorbed on the Cu(100) surface immobilizes the surface electrons in the Cu–O covalent bonds. This results in electronic surface hardening and prevents charge transfer from the metal into perylene-tetracarboxylic dianhydride molecules subsequently deposited on this surface.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

We report a method to achieve physical and electronic decoupling of organic molecules from a metal surface. Oxygen adsorbed on the Cu(100) surface immobilizes the surface electrons in the Cu–O covalent bonds. This results in electronic surface hardening and prevents charge transfer from the metal into perylene-tetracarboxylic dianhydride molecules subsequently deposited on this surface.

Close

  • doi:10.1039/C8CC03334J

Close

2017

11.

D. Lüftner, S. Weiß, X. Yang, P. Hurdax, V. Feyer, A. Gottwald, G. Koller, S. Soubatch, P. Puschnig, M. G. Ramsey, F. S. Tautz

Understanding the photoemission distribution of strongly interacting two-dimensional overlayers Journal Article

In: Phys. Rev. B, vol. 96, pp. 125402, 2017.

Abstract | Links | BibTeX

@article{Lueftner2017,
title = {Understanding the photoemission distribution of strongly interacting two-dimensional overlayers},
author = {D. Lüftner and S. Weiß and X. Yang and P. Hurdax and V. Feyer and A. Gottwald and G. Koller and S. Soubatch and P. Puschnig and M. G. Ramsey and F. S. Tautz},
doi = {10.1103/PhysRevB.96.125402},
year = {2017},
date = {2017-01-01},
journal = {Phys. Rev. B},
volume = {96},
pages = {125402},
abstract = {Photoemission tomography (PT), the analysis of the photoemission intensity distribution within the plane wave final-state approximation, is being established as a useful tool for extracting the electronic and geometric structure of weakly interacting organic overlayers. Here we present a simple method for extending PT, which until now has been based on the calculations of isolated molecules. By including the substrate and a damped plane-wave final state, we are able to simulate the photoemission intensity distribution of two-dimensional molecular overlayers with both strong intermolecular and molecule-substrate interactions, here demonstrated for the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) on Cu(100). It is shown that the interaction and hybridization of the lowest unoccupied molecular orbital of PTCDA with substrate states leads to its occupation and the formation of a strongly dispersing intermolecular band, whose experimental magnitude of 1.1 eV and k-space periodicity is well reproduced theoretically.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Photoemission tomography (PT), the analysis of the photoemission intensity distribution within the plane wave final-state approximation, is being established as a useful tool for extracting the electronic and geometric structure of weakly interacting organic overlayers. Here we present a simple method for extending PT, which until now has been based on the calculations of isolated molecules. By including the substrate and a damped plane-wave final state, we are able to simulate the photoemission intensity distribution of two-dimensional molecular overlayers with both strong intermolecular and molecule-substrate interactions, here demonstrated for the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) on Cu(100). It is shown that the interaction and hybridization of the lowest unoccupied molecular orbital of PTCDA with substrate states leads to its occupation and the formation of a strongly dispersing intermolecular band, whose experimental magnitude of 1.1 eV and k-space periodicity is well reproduced theoretically.

Close

  • doi:10.1103/PhysRevB.96.125402

Close

10.

P. Puschnig, A. D. Boese, M. Willenbockel, M. Meyer, D. Lüftner, E. M. Reinisch, T. Ules, G. Koller, S. Soubatch, M. G. Ramsey, F. S. Tautz

Energy ordering of molecular orbitals Journal Article

In: J. Phys. Chem. Lett., vol. 8, pp. 208-213, 2017.

Abstract | Links | BibTeX

@article{Puschnig2016,
title = {Energy ordering of molecular orbitals},
author = {P. Puschnig and A. D. Boese and M. Willenbockel and M. Meyer and D. Lüftner and E. M. Reinisch and T. Ules and G. Koller and S. Soubatch and M. G. Ramsey and F. S. Tautz},
doi = {10.1021/acs.jpclett.6b02517},
year = {2017},
date = {2017-01-01},
journal = {J. Phys. Chem. Lett.},
volume = {8},
pages = {208-213},
abstract = {Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations.

Close

  • doi:10.1021/acs.jpclett.6b02517

Close

9.

M. Hollerer, D. Lüftner, P. Hurdax, T. Ules, S. Soubatch, F. S. Tautz, G. Koller, P. Puschnig, M. Sterrer, M. G. Ramsey

Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers Journal Article

In: ACS Nano, vol. 11, pp. 6252-6260, 2017.

Abstract | Links | BibTeX

@article{Hollerer2017,
title = {Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers},
author = {M. Hollerer and D. Lüftner and P. Hurdax and T. Ules and S. Soubatch and F. S. Tautz and G. Koller and P. Puschnig and M. Sterrer and M. G. Ramsey},
doi = {10.1021/acsnano.7b02449},
year = {2017},
date = {2017-01-01},
journal = {ACS Nano},
volume = {11},
pages = {6252-6260},
abstract = {It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.

Close

  • doi:10.1021/acsnano.7b02449

Close

2016

8.

K. Schönauer, S. Weiß, V. Feyer, D. Lüftner, B. Stadtmüller, D. Schwarz, T. Sueyoshi, C. Kumpf, P. Puschnig, M. G. Ramsey, F. S. Tautz, S. Soubatch

Charge transfer and symmetry reduction at the CuPc/Ag(110) interface studied by photoemission tomography Journal Article

In: Phys. Rev. B, vol. 94, pp. 205144, 2016.

Abstract | Links | BibTeX

@article{Schonauer2016,
title = {Charge transfer and symmetry reduction at the CuPc/Ag(110) interface studied by photoemission tomography},
author = {K. Schönauer and S. Weiß and V. Feyer and D. Lüftner and B. Stadtmüller and D. Schwarz and T. Sueyoshi and C. Kumpf and P. Puschnig and M. G. Ramsey and F. S. Tautz and S. Soubatch},
doi = {10.1103/PhysRevB.94.205144},
year = {2016},
date = {2016-01-01},
journal = {Phys. Rev. B},
volume = {94},
pages = {205144},
abstract = {On the Ag(110) surface copper phthalocyanine (CuPc) orders in two structurally similar superstructures, as revealed by low-energy electron diffraction. Scanning tunneling microscopy (STM) shows that in both superstructures the molecular planes are oriented parallel to the surface and the long molecular axes, defined as diagonals of the square molecule, are rotated by ≃±32° away from the high-symmetry directions [1-10] and [001] of the silver surface. Similarly to many other adsorbed metal phthalocyanines, the CuPc molecules on Ag(110) appear in STM as crosslike features with twofold symmetry. Photoemission tomography based on angle-resolved photoemission spectroscopy reveals a charge transfer from the substrate into the molecule. A symmetry analysis of experimental and theoretical constant binding energy maps of the photoemission intensity in the kx,ky-plane points to a preferential occupation of one of the two initially degenerate lowest unoccupied molecular orbitals (LUMOs) of eg symmetry. The occupied eg orbital is rotated by 32° against the [001] direction of the substrate. The lifting of the degeneracy of the LUMOs and the related reduction of the symmetry of the adsorbed CuPc molecule are attributed to an anisotropy in the chemical reactivity of the Ag(110) surface.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

On the Ag(110) surface copper phthalocyanine (CuPc) orders in two structurally similar superstructures, as revealed by low-energy electron diffraction. Scanning tunneling microscopy (STM) shows that in both superstructures the molecular planes are oriented parallel to the surface and the long molecular axes, defined as diagonals of the square molecule, are rotated by ≃±32° away from the high-symmetry directions [1-10] and [001] of the silver surface. Similarly to many other adsorbed metal phthalocyanines, the CuPc molecules on Ag(110) appear in STM as crosslike features with twofold symmetry. Photoemission tomography based on angle-resolved photoemission spectroscopy reveals a charge transfer from the substrate into the molecule. A symmetry analysis of experimental and theoretical constant binding energy maps of the photoemission intensity in the kx,ky-plane points to a preferential occupation of one of the two initially degenerate lowest unoccupied molecular orbitals (LUMOs) of eg symmetry. The occupied eg orbital is rotated by 32° against the [001] direction of the substrate. The lifting of the degeneracy of the LUMOs and the related reduction of the symmetry of the adsorbed CuPc molecule are attributed to an anisotropy in the chemical reactivity of the Ag(110) surface.

Close

  • doi:10.1103/PhysRevB.94.205144

Close

2015

7.

M. Willenbockel, D. Lüftner, B. Stadtmüller, G. Koller, C. Kumpf, S. Soubatch, P. Puschnig, M. G. Ramsey, F. S. Tautz

The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces Journal Article

In: Phys. Chem. Chem. Phys., vol. 17, pp. 1530-1548, 2015.

Abstract | Links | BibTeX

@article{Willenbockel2014,
title = {The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces},
author = {M. Willenbockel and D. Lüftner and B. Stadtmüller and G. Koller and C. Kumpf and S. Soubatch and P. Puschnig and M. G. Ramsey and F. S. Tautz},
doi = {10.1039/C4CP04595E},
year = {2015},
date = {2015-01-01},
journal = {Phys. Chem. Chem. Phys.},
volume = {17},
pages = {1530-1548},
abstract = {What do energy level alignments at metal–organic interfaces reveal about the metal–molecule bonding strength? Is it permissible to take vertical adsorption heights as indicators of bonding strengths? In this paper we analyse 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on the three canonical low index Ag surfaces to provide exemplary answers to these questions. Specifically, we employ angular resolved photoemission spectroscopy for a systematic study of the energy level alignments of the two uppermost frontier states in ordered monolayer phases of PTCDA. Data are analysed using the orbital tomography approach. This allows the unambiguous identification of the orbital character of these states, and also the discrimination between inequivalent species. Combining this experimental information with DFT calculations and the generic Newns–Anderson chemisorption model, we analyse the alignments of highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) with respect to the vacuum levels of bare and molecule-covered surfaces. This reveals clear differences between the two frontier states. In particular, on all surfaces the LUMO is subject to considerable bond stabilization through the interaction between the molecular π-electron system and the metal, as a consequence of which it also becomes occupied. Moreover, we observe a larger bond stabilization for the more open surfaces. Most importantly, our analysis shows that both the orbital binding energies of the LUMO and the overall adsorption heights of the molecule are linked to the strength of the chemical interaction between the molecular π-electron system and the metal, in the sense that stronger bonding leads to shorter adsorption heights and larger orbital binding energies.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

What do energy level alignments at metal–organic interfaces reveal about the metal–molecule bonding strength? Is it permissible to take vertical adsorption heights as indicators of bonding strengths? In this paper we analyse 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on the three canonical low index Ag surfaces to provide exemplary answers to these questions. Specifically, we employ angular resolved photoemission spectroscopy for a systematic study of the energy level alignments of the two uppermost frontier states in ordered monolayer phases of PTCDA. Data are analysed using the orbital tomography approach. This allows the unambiguous identification of the orbital character of these states, and also the discrimination between inequivalent species. Combining this experimental information with DFT calculations and the generic Newns–Anderson chemisorption model, we analyse the alignments of highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) with respect to the vacuum levels of bare and molecule-covered surfaces. This reveals clear differences between the two frontier states. In particular, on all surfaces the LUMO is subject to considerable bond stabilization through the interaction between the molecular π-electron system and the metal, as a consequence of which it also becomes occupied. Moreover, we observe a larger bond stabilization for the more open surfaces. Most importantly, our analysis shows that both the orbital binding energies of the LUMO and the overall adsorption heights of the molecule are linked to the strength of the chemical interaction between the molecular π-electron system and the metal, in the sense that stronger bonding leads to shorter adsorption heights and larger orbital binding energies.

Close

  • doi:10.1039/C4CP04595E

Close

6.

S. Weiß, D. Lüftner, T. Ules, E. M. Reinisch, H. Kaser, A. Gottwald, M. Richter, S. Soubatch, G. Koller, M. G. Ramsey, F. S. Tautz, P. Puschnig

Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography Journal Article

In: Nat. Commun., vol. 6, pp. 8287, 2015.

Abstract | Links | BibTeX

@article{Weiss2015,
title = {Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography},
author = {S. Weiß and D. Lüftner and T. Ules and E. M. Reinisch and H. Kaser and A. Gottwald and M. Richter and S. Soubatch and G. Koller and M. G. Ramsey and F. S. Tautz and P. Puschnig},
doi = {10.1038/ncomms9287},
year = {2015},
date = {2015-01-01},
journal = {Nat. Commun.},
volume = {6},
pages = {8287},
abstract = {Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule.

Close

  • doi:10.1038/ncomms9287

Close

2014

5.

B. Stadtmüller, D. Lüftner, M. Willenbockel, E. M. Reinisch, T. Sueyoshi, G. Koller, S. Soubatch, M. G. Ramsey, P. Puschnig, F. S. Tautz, C. Kumpf

Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces Journal Article

In: Nat. Commun., vol. 5, pp. 3685, 2014.

Abstract | Links | BibTeX

@article{Stadtmuller2013,
title = {Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces},
author = {B. Stadtmüller and D. Lüftner and M. Willenbockel and E. M. Reinisch and T. Sueyoshi and G. Koller and S. Soubatch and M. G. Ramsey and P. Puschnig and F. S. Tautz and C. Kumpf},
doi = {10.1038/ncomms4685},
year = {2014},
date = {2014-01-01},
journal = {Nat. Commun.},
volume = {5},
pages = {3685},
abstract = {Although geometric and electronic properties of any physical or chemical system are always mutually coupled by the rules of quantum mechanics, counterintuitive coincidences between the two are sometimes observed. The coadsorption of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and copper-II-phthalocyanine on Ag(111) represents such a case, since geometric and electronic structures appear to be decoupled: one molecule moves away from the substrate while its electronic structure indicates a stronger chemical interaction, and vice versa for the other. Our comprehensive experimental and ab-initio theoretical study reveals that, mediated by the metal surface, both species mutually amplify their charge-donating and -accepting characters, respectively. This resolves the apparent paradox, and demonstrates with exceptional clarity how geometric and electronic bonding parameters are intertwined at metal–organic interfaces.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Although geometric and electronic properties of any physical or chemical system are always mutually coupled by the rules of quantum mechanics, counterintuitive coincidences between the two are sometimes observed. The coadsorption of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and copper-II-phthalocyanine on Ag(111) represents such a case, since geometric and electronic structures appear to be decoupled: one molecule moves away from the substrate while its electronic structure indicates a stronger chemical interaction, and vice versa for the other. Our comprehensive experimental and ab-initio theoretical study reveals that, mediated by the metal surface, both species mutually amplify their charge-donating and -accepting characters, respectively. This resolves the apparent paradox, and demonstrates with exceptional clarity how geometric and electronic bonding parameters are intertwined at metal–organic interfaces.

Close

  • doi:10.1038/ncomms4685

Close

4.

D. Lüftner, T. Ules, E. M. Reinisch, G. Koller, S. Soubatch, F. S. Tautz, M. G. Ramsey, P. Puschnig

Imaging the wave functions of adsorbed molecules Journal Article

In: PNAS, vol. 111, no. 2, pp. 605-610, 2014.

Abstract | Links | BibTeX

@article{Luftner2013,
title = {Imaging the wave functions of adsorbed molecules},
author = {D. Lüftner and T. Ules and E. M. Reinisch and G. Koller and S. Soubatch and F. S. Tautz and M. G. Ramsey and P. Puschnig},
doi = {10.1073/pnas.1315716110},
year = {2014},
date = {2014-01-01},
journal = {PNAS},
volume = {111},
number = {2},
pages = {605-610},
abstract = {In quantum mechanics, the electrons in a molecule are described by a mathematical object termed the wave function or molecular orbital. This function determines the chemical and physical properties of matter and consequently there has been much interest in measuring orbitals, despite the fact that strictly speaking they are not quantum-mechanical observables. We show how the amplitude and phase of orbitals can be measured in good agreement with wave functions from ab initio calculations. Not only do such measurements allow wave functions of complex molecules and nanostructures to be determined, they also open up a window into critical discussions of theoretical orbital concepts.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

In quantum mechanics, the electrons in a molecule are described by a mathematical object termed the wave function or molecular orbital. This function determines the chemical and physical properties of matter and consequently there has been much interest in measuring orbitals, despite the fact that strictly speaking they are not quantum-mechanical observables. We show how the amplitude and phase of orbitals can be measured in good agreement with wave functions from ab initio calculations. Not only do such measurements allow wave functions of complex molecules and nanostructures to be determined, they also open up a window into critical discussions of theoretical orbital concepts.

Close

  • doi:10.1073/pnas.1315716110

Close

2013

3.

M. Willenbockel, B. Stadtmüller, K. Schönauer, F. C. Bocquet, D. Lüftner, E. M. Reinisch, T. Ules, G. Koller, C. Kumpf, S. Soubatch, P. Puschnig, M. G. Ramsey, F. S. Tautz

Energy offsets within a molecular monolayer: The influence of the molecular environment Journal Article

In: New J. Phys., vol. 15, pp. 033017, 2013.

Abstract | Links | BibTeX

@article{Willenbockel2012,
title = {Energy offsets within a molecular monolayer: The influence of the molecular environment},
author = {M. Willenbockel and B. Stadtmüller and K. Schönauer and F. C. Bocquet and D. Lüftner and E. M. Reinisch and T. Ules and G. Koller and C. Kumpf and S. Soubatch and P. Puschnig and M. G. Ramsey and F. S. Tautz},
doi = {10.1088/1367-2630/15/3/033017},
year = {2013},
date = {2013-01-01},
journal = {New J. Phys.},
volume = {15},
pages = {033017},
abstract = {The compressed 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) herringbone monolayer structure on Ag(110) is used as a model system to investigate the role of molecule–molecule interactions at metal–organic interfaces. By means of the orbital tomography technique, we can not only distinguish the two inequivalent molecules in the unit cell but also resolve their different energy positions for the highest occupied and the lowest unoccupied molecular orbitals. Density functional theory calculations of a freestanding PTCDA layer identify the electrostatic interaction between neighboring molecules, rather than the adsorption site, as the main reason for the molecular level splitting observed experimentally.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

The compressed 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) herringbone monolayer structure on Ag(110) is used as a model system to investigate the role of molecule–molecule interactions at metal–organic interfaces. By means of the orbital tomography technique, we can not only distinguish the two inequivalent molecules in the unit cell but also resolve their different energy positions for the highest occupied and the lowest unoccupied molecular orbitals. Density functional theory calculations of a freestanding PTCDA layer identify the electrostatic interaction between neighboring molecules, rather than the adsorption site, as the main reason for the molecular level splitting observed experimentally.

Close

  • doi:10.1088/1367-2630/15/3/033017

Close

2012

2.

B. Stadtmüller, M. Willenbockel, E. M. Reinisch, T. Ules, F. C. Bocquet, S. Soubatch, P. Puschnig, G. Koller, M. G. Ramsey, F. S. Tautz, C. Kumpf

Orbital tomography for highly symmetric adsorbate systems Journal Article

In: Europhys. Lett., vol. 100, pp. 26008, 2012.

Abstract | Links | BibTeX

@article{Stadtmuller2012a,
title = {Orbital tomography for highly symmetric adsorbate systems},
author = {B. Stadtmüller and M. Willenbockel and E. M. Reinisch and T. Ules and F. C. Bocquet and S. Soubatch and P. Puschnig and G. Koller and M. G. Ramsey and F. S. Tautz and C. Kumpf},
doi = {10.1209/0295-5075/100/26008},
year = {2012},
date = {2012-01-01},
journal = {Europhys. Lett.},
volume = {100},
pages = {26008},
abstract = {Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

Close

  • doi:10.1209/0295-5075/100/26008

Close

2011

1.

P. Puschnig, E. M. Reinisch, T. Ules, G. Koller, S. Soubatch, M. Ostler, L. Romaner, F. S. Tautz, C. Ambrosch-Draxl, M. G. Ramsey

Orbital tomography: Deconvoluting photoemission spectra of organic molecules Journal Article

In: Phys. Rev. B, vol. 84, pp. 235427, 2011.

Abstract | Links | BibTeX

@article{Puschnig2011,
title = {Orbital tomography: Deconvoluting photoemission spectra of organic molecules},
author = {P. Puschnig and E. M. Reinisch and T. Ules and G. Koller and S. Soubatch and M. Ostler and L. Romaner and F. S. Tautz and C. Ambrosch-Draxl and M. G. Ramsey},
doi = {10.1103/PhysRevB.84.235427},
year = {2011},
date = {2011-01-01},
journal = {Phys. Rev. B},
volume = {84},
pages = {235427},
abstract = {We study the interface of an organic monolayer with a metallic surface, i.e., PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) on Ag(110), by means of angle-resolved photoemission spectroscopy (ARPES) and ab initio electronic structure calculations. We present a tomographic method that uses the energy and momentum dependence of ARPES data to deconvolute spectra into individual orbital contributions beyond the limits of energy resolution. This provides an orbital-by-orbital characterization of large adsorbate systems without the need to invoke a sophisticated theory of photoemission, allowing us to directly estimate the effects of bonding on individual orbitals. Moreover, these experimental data serve as a most stringent test necessary for the further development of ab initio electronic structure theory.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

We study the interface of an organic monolayer with a metallic surface, i.e., PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) on Ag(110), by means of angle-resolved photoemission spectroscopy (ARPES) and ab initio electronic structure calculations. We present a tomographic method that uses the energy and momentum dependence of ARPES data to deconvolute spectra into individual orbital contributions beyond the limits of energy resolution. This provides an orbital-by-orbital characterization of large adsorbate systems without the need to invoke a sophisticated theory of photoemission, allowing us to directly estimate the effects of bonding on individual orbitals. Moreover, these experimental data serve as a most stringent test necessary for the further development of ab initio electronic structure theory.

Close

  • doi:10.1103/PhysRevB.84.235427

Close

Alumni
© Copyright - Orbital Tomography
  • Legal Notice
  • Privacy Policy
Scroll to top

This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

Accept settingsHide notification onlySettings

Cookie and Privacy Settings



How we use cookies

We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

Essential Website Cookies

These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

Other external services

We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

Google Webfont Settings:

Google Map Settings:

Google reCaptcha Settings:

Vimeo and Youtube video embeds:

Privacy Policy

You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

Privacy Policy
Accept settingsHide notification only