2022
|
12. | M. S. Sättele, A. Windischbacher, K. Greulich, L. Egger, A. Haags, H. Kirschner, R. Ovsyannikov, E. Giangrisostomi, A. Gottwald, M. Richter, S. Soubatch, F. S. Tautz, M. G. Ramsey, P. Puschnig, G. Koller, H. F. Bettinger, T. Chassé, H. Peisert Hexacene on Cu(110) and Ag(110): Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer Journal Article In: J. Phys. Chem. C, vol. 126, pp. 5036-5045, 2022. @article{Saettele2022,
title = {Hexacene on Cu(110) and Ag(110): Influence of the Substrate on Molecular Orientation and Interfacial Charge Transfer},
author = {M. S. Sättele and A. Windischbacher and K. Greulich and L. Egger and A. Haags and H. Kirschner and R. Ovsyannikov and E. Giangrisostomi and A. Gottwald and M. Richter and S. Soubatch and F. S. Tautz and M. G. Ramsey and P. Puschnig and G. Koller and H. F. Bettinger and T. Chassé and H. Peisert},
doi = {10.1021/acs.jpcc.2c00081},
year = {2022},
date = {2022-01-01},
journal = {J. Phys. Chem. C},
volume = {126},
pages = {5036-5045},
abstract = {Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110).},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT). We find pronounced differences in the structural arrangement of the molecules and the electronic properties at the metal/organic interfaces for the two substrates. While on Cu(110) the molecules adsorb with their long molecular axis parallel to the high symmetry substrate direction, on Ag(110), hexacene adsorbs in an azimuthally slightly rotated geometry with respect to the metal rows of the substrate. In both cases, molecular planes are oriented parallel to the substrate. A pronounced charge transfer from both substrates to different molecular states affects the effective charge of different C atoms of the molecule. Through analysis of experimental and theoretical data, we found out that on Ag(110) the LUMO of the molecule is occupied through charge transfer from the metal, whereas on Cu(110) even the LUMO+1 receives a charge. Interface dipoles are determined to a large extent by the push-back effect, which are also found to differ significantly between 6A/Ag(110) and 6A/Cu(110). |
11. | A. Haags, X. Yang, L. Egger, D. Brandstetter, H. Kirschner, F. C. Bocquet, G. Koller, A. Gottwald, M. Richter, J. M. Gottfried, M. G. Ramsey, P. Puschnig, S. Soubatch, F. S. Tautz Momentum-space imaging of σ-orbitals for chemical analysis Journal Article In: Sci. Adv., vol. 8, pp. eabn0819, 2022. @article{Haags2021,
title = {Momentum-space imaging of σ-orbitals for chemical analysis},
author = {A. Haags and X. Yang and L. Egger and D. Brandstetter and H. Kirschner and F. C. Bocquet and G. Koller and A. Gottwald and M. Richter and J. M. Gottfried and M. G. Ramsey and P. Puschnig and S. Soubatch and F. S. Tautz},
doi = {10.1126/sciadv.abn0819},
year = {2022},
date = {2022-01-01},
journal = {Sci. Adv.},
volume = {8},
pages = {eabn0819},
abstract = {Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Tracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing. Here, we show that these orbitals can indeed be imaged in a remarkably broad energy range and that the plane wave approximation, an important ingredient of photoemission orbital tomography, is also well fulfilled for these orbitals. This makes photoemission orbital tomography a unique tool for the detailed analysis of surface chemical reactions. We demonstrate this by identifying the reaction product of a dehalogenation and cyclodehydrogenation reaction. |
10. | P. Hurdax, C. S. Kern, T. G. Boné, A. Haags, M. Hollerer, L. Egger, X. Yang, H. Kirschner, A. Gottwald, M. Richter, F. C. Bocquet, S. Soubatch, G. Koller, F. S. Tautz, M. Sterrer, P. Puschnig, M. G. Ramsey Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography Journal Article In: ACS Nano, vol. 16, pp. 17435-17443, 2022. @article{Hurdax2022,
title = {Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography},
author = {P. Hurdax and C. S. Kern and T. G. Boné and A. Haags and M. Hollerer and L. Egger and X. Yang and H. Kirschner and A. Gottwald and M. Richter and F. C. Bocquet and S. Soubatch and G. Koller and F. S. Tautz and M. Sterrer and P. Puschnig and M. G. Ramsey},
doi = {10.1021/acsnano.2c08631},
year = {2022},
date = {2022-01-01},
journal = {ACS Nano},
volume = {16},
pages = {17435-17443},
abstract = {Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule. |
2021
|
9. | L. Egger, M. Hollerer, C. S. Kern, H. Herrmann, P. Hurdax, A. Haags, X. Yang, A. Gottwald, M. Richter, S. Soubatch, F. S. Tautz, G. Koller, P. Puschnig, M. G. Ramsey, M. Sterrer Charge-promoted self-metalation of porphyrins on an oxide surface Journal Article In: Angew. Chem. Int. Ed., vol. 60, pp. 5078-5082, 2021. @article{Egger2020,
title = {Charge-promoted self-metalation of porphyrins on an oxide surface},
author = {L. Egger and M. Hollerer and C. S. Kern and H. Herrmann and P. Hurdax and A. Haags and X. Yang and A. Gottwald and M. Richter and S. Soubatch and F. S. Tautz and G. Koller and P. Puschnig and M. G. Ramsey and M. Sterrer},
doi = {10.1002/anie.202015187},
year = {2021},
date = {2021-01-01},
journal = {Angew. Chem. Int. Ed.},
volume = {60},
pages = {5078-5082},
abstract = {Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer. By tuning the work function of the MgO(001)/Ag(001) substrate, we are able to control the charge and the metalation state of the porphyrin molecules on the surface. |
8. | M. S. Sättele, A. Windischbacher, L. Egger, A. Haags, P. Hurdax, H. Kirschner, A. Gottwald, M. Richter, F. C. Bocquet, S. Soubatch, F. S. Tautz, H. F. Bettinger, H. Peisert, T. Chassé, M. G. Ramsey, P. Puschnig, G. Koller Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110) Journal Article In: J. Phys. Chem. C, vol. 125, pp. 2918-2925, 2021. @article{Saettele2020,
title = {Going beyond Pentacene: Photoemission Tomography of a Heptacene Monolayer on Ag(110)},
author = {M. S. Sättele and A. Windischbacher and L. Egger and A. Haags and P. Hurdax and H. Kirschner and A. Gottwald and M. Richter and F. C. Bocquet and S. Soubatch and F. S. Tautz and H. F. Bettinger and H. Peisert and T. Chassé and M. G. Ramsey and P. Puschnig and G. Koller},
doi = {10.1021/acs.jpcc.0c09062},
year = {2021},
date = {2021-01-01},
journal = {J. Phys. Chem. C},
volume = {125},
pages = {2918-2925},
abstract = {Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes. In a combined effort of angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations, we characterize the electronic and structural properties of the molecule on the surface in detail. Our investigations allow us to unambiguously confirm the successful fabrication of a highly oriented complete monolayer of heptacene and to describe its electronic structure. By comparing experimental momentum maps of photoemission from frontier orbitals of heptacene and pentacene, we shed light on differences between these two acenes regarding their molecular orientation and energy-level alignment on the metal surfaces. |
2020
|
7. | A. Haags, A. Reichmann, Q. Fan, L. Egger, H. Kirschner, T. Naumann, S. Werner, T. Vollgraff, J. Sundermeyer, L. Eschmann, X. Yang, D. Brandstetter, F. C. Bocquet, G. Koller, A. Gottwald, M. Richter, M. G. Ramsey, M. Rohlfing, P. Puschnig, J. M. Gottfried, S. Soubatch, F. S. Tautz Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization Journal Article In: ACS Nano, vol. 14, pp. 15766-15775, 2020. @article{Haags2020,
title = {Kekulene: On-Surface Synthesis, Orbital Structure, and Aromatic Stabilization},
author = {A. Haags and A. Reichmann and Q. Fan and L. Egger and H. Kirschner and T. Naumann and S. Werner and T. Vollgraff and J. Sundermeyer and L. Eschmann and X. Yang and D. Brandstetter and F. C. Bocquet and G. Koller and A. Gottwald and M. Richter and M. G. Ramsey and M. Rohlfing and P. Puschnig and J. M. Gottfried and S. Soubatch and F. S. Tautz},
doi = {10.1021/acsnano.0c06798},
year = {2020},
date = {2020-01-01},
journal = {ACS Nano},
volume = {14},
pages = {15766-15775},
abstract = {We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoemission tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule. |
6. | P. Hurdax, M. Hollerer, L. Egger, G. Koller, X. Yang, A. Haags, S. Soubatch, F. S. Tautz, M. Richter, A. Gottwald, P. Puschnig, M. Sterrer, M. G. Ramsey Controlling the electronic and physical coupling on dielectric thin films Journal Article In: Beilstein J. Nanotechnol., vol. 11, pp. 1492-1503, 2020. @article{Hurdax2020a,
title = {Controlling the electronic and physical coupling on dielectric thin films},
author = {P. Hurdax and M. Hollerer and L. Egger and G. Koller and X. Yang and A. Haags and S. Soubatch and F. S. Tautz and M. Richter and A. Gottwald and P. Puschnig and M. Sterrer and M. G. Ramsey},
doi = {10.3762/bjnano.11.132},
year = {2020},
date = {2020-01-01},
journal = {Beilstein J. Nanotechnol.},
volume = {11},
pages = {1492-1503},
abstract = {Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of para-sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films. |
2019
|
5. | L. Egger, B. Kollmann, P. Hurdax, D. Lüftner, X. Yang, S. Weiß, A. Gottwald, M. Richter, G. Koller, S. Soubatch, F. S. Tautz, P. Puschnig, M. G. Ramsey Can photoemission tomography be useful for small, strongly-interacting adsorbate systems? Journal Article In: New J. Phys., vol. 21, pp. 043003, 2019. @article{Egger2018,
title = {Can photoemission tomography be useful for small, strongly-interacting adsorbate systems?},
author = {L. Egger and B. Kollmann and P. Hurdax and D. Lüftner and X. Yang and S. Weiß and A. Gottwald and M. Richter and G. Koller and S. Soubatch and F. S. Tautz and P. Puschnig and M. G. Ramsey},
doi = {10.1088/1367-2630/ab0781},
year = {2019},
date = {2019-01-01},
journal = {New J. Phys.},
volume = {21},
pages = {043003},
abstract = {Molecular orbital tomography, also termed photoemission tomography, which considers the final state as a simple plane wave, has been very successful in describing the photoemisson distribution of large adsorbates on noble metal surfaces. Here, following a suggestion by Bradshaw and Woodruff (2015 New J. Phys. 17 013033), we consider a small and strongly-interacting system, benzene adsorbed on palladium (110), to consider the extent of the problems that can arise with the final state simplification. Our angle-resolved photoemission experiments, supported by density functional theory calculations, substantiate and refine the previously determined adsorption geometry and reveal an energetic splitting of the frontier π-orbital due to a symmetry breaking which has remained unnoticed before. We find that, despite the small size of benzene and the comparably strong interaction with palladium, the overall appearance of the photoemission angular distributions can basically be understood within a plane wave final state approximation and yields a deeper understanding of the electronic structure of the interface. There are, however, noticeable deviations between measured and simulated angular patterns which we ascribe to molecule-substrate interactions and effects beyond a plane-wave final state description.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Molecular orbital tomography, also termed photoemission tomography, which considers the final state as a simple plane wave, has been very successful in describing the photoemisson distribution of large adsorbates on noble metal surfaces. Here, following a suggestion by Bradshaw and Woodruff (2015 New J. Phys. 17 013033), we consider a small and strongly-interacting system, benzene adsorbed on palladium (110), to consider the extent of the problems that can arise with the final state simplification. Our angle-resolved photoemission experiments, supported by density functional theory calculations, substantiate and refine the previously determined adsorption geometry and reveal an energetic splitting of the frontier π-orbital due to a symmetry breaking which has remained unnoticed before. We find that, despite the small size of benzene and the comparably strong interaction with palladium, the overall appearance of the photoemission angular distributions can basically be understood within a plane wave final state approximation and yields a deeper understanding of the electronic structure of the interface. There are, however, noticeable deviations between measured and simulated angular patterns which we ascribe to molecule-substrate interactions and effects beyond a plane-wave final state description. |
4. | X. Yang, L. Egger, P. Hurdax, H. Kaser, D. Lüftner, F. C. Bocquet, G. Koller, A. Gottwald, P. Tegeder, M. Richter, M. G. Ramsey, P. Puschnig, S. Soubatch, F. S. Tautz Identifying surface reaction intermediates with photoemission tomography Journal Article In: Nat. Commun., vol. 10, pp. 3189, 2019. @article{Yang2019,
title = {Identifying surface reaction intermediates with photoemission tomography},
author = {X. Yang and L. Egger and P. Hurdax and H. Kaser and D. Lüftner and F. C. Bocquet and G. Koller and A. Gottwald and P. Tegeder and M. Richter and M. G. Ramsey and P. Puschnig and S. Soubatch and F. S. Tautz},
doi = {10.1038/s41467-019-11133-9},
year = {2019},
date = {2019-01-01},
journal = {Nat. Commun.},
volume = {10},
pages = {3189},
abstract = {The determination of reaction pathways and the identification of reaction intermediates are key issues in chemistry. Surface reactions are particularly challenging, since many methods of analytical chemistry are inapplicable at surfaces. Recently, atomic force microscopy has been employed to identify surface reaction intermediates. While providing an excellent insight into the molecular backbone structure, atomic force microscopy is less conclusive about the molecular periphery, where adsorbates tend to react with the substrate. Here we show that photoemission tomography is extremely sensitive to the character of the frontier orbitals. Specifically, hydrogen abstraction at the molecular periphery is easily detected, and the precise nature of the reaction intermediates can be determined. This is illustrated with the thermally induced reaction of dibromo-bianthracene to graphene which is shown to proceed via a fully hydrogenated bisanthene intermediate. We anticipate that photoemission tomography will become a powerful companion to other techniques in the study of surface reaction pathways.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
The determination of reaction pathways and the identification of reaction intermediates are key issues in chemistry. Surface reactions are particularly challenging, since many methods of analytical chemistry are inapplicable at surfaces. Recently, atomic force microscopy has been employed to identify surface reaction intermediates. While providing an excellent insight into the molecular backbone structure, atomic force microscopy is less conclusive about the molecular periphery, where adsorbates tend to react with the substrate. Here we show that photoemission tomography is extremely sensitive to the character of the frontier orbitals. Specifically, hydrogen abstraction at the molecular periphery is easily detected, and the precise nature of the reaction intermediates can be determined. This is illustrated with the thermally induced reaction of dibromo-bianthracene to graphene which is shown to proceed via a fully hydrogenated bisanthene intermediate. We anticipate that photoemission tomography will become a powerful companion to other techniques in the study of surface reaction pathways. |
2017
|
3. | D. Lüftner, S. Weiß, X. Yang, P. Hurdax, V. Feyer, A. Gottwald, G. Koller, S. Soubatch, P. Puschnig, M. G. Ramsey, F. S. Tautz Understanding the photoemission distribution of strongly interacting two-dimensional overlayers Journal Article In: Phys. Rev. B, vol. 96, pp. 125402, 2017. @article{Lueftner2017,
title = {Understanding the photoemission distribution of strongly interacting two-dimensional overlayers},
author = {D. Lüftner and S. Weiß and X. Yang and P. Hurdax and V. Feyer and A. Gottwald and G. Koller and S. Soubatch and P. Puschnig and M. G. Ramsey and F. S. Tautz},
doi = {10.1103/PhysRevB.96.125402},
year = {2017},
date = {2017-01-01},
journal = {Phys. Rev. B},
volume = {96},
pages = {125402},
abstract = {Photoemission tomography (PT), the analysis of the photoemission intensity distribution within the plane wave final-state approximation, is being established as a useful tool for extracting the electronic and geometric structure of weakly interacting organic overlayers. Here we present a simple method for extending PT, which until now has been based on the calculations of isolated molecules. By including the substrate and a damped plane-wave final state, we are able to simulate the photoemission intensity distribution of two-dimensional molecular overlayers with both strong intermolecular and molecule-substrate interactions, here demonstrated for the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) on Cu(100). It is shown that the interaction and hybridization of the lowest unoccupied molecular orbital of PTCDA with substrate states leads to its occupation and the formation of a strongly dispersing intermolecular band, whose experimental magnitude of 1.1 eV and k-space periodicity is well reproduced theoretically.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Photoemission tomography (PT), the analysis of the photoemission intensity distribution within the plane wave final-state approximation, is being established as a useful tool for extracting the electronic and geometric structure of weakly interacting organic overlayers. Here we present a simple method for extending PT, which until now has been based on the calculations of isolated molecules. By including the substrate and a damped plane-wave final state, we are able to simulate the photoemission intensity distribution of two-dimensional molecular overlayers with both strong intermolecular and molecule-substrate interactions, here demonstrated for the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) on Cu(100). It is shown that the interaction and hybridization of the lowest unoccupied molecular orbital of PTCDA with substrate states leads to its occupation and the formation of a strongly dispersing intermolecular band, whose experimental magnitude of 1.1 eV and k-space periodicity is well reproduced theoretically. |
2016
|
2. | G. Koller, P. Puschnig, A. Gottwald, F. S. Tautz Elektronenorbitale in 3D - Photoelektronen-tomographische Bilder von Molekülorbitalen Journal Article In: Physik in unserer Zeit, vol. 47, pp. 192-198, 2016. @article{Koller2016,
title = {Elektronenorbitale in 3D - Photoelektronen-tomographische Bilder von Molekülorbitalen},
author = {G. Koller and P. Puschnig and A. Gottwald and F. S. Tautz},
doi = {10.1002/piuz.201601442},
year = {2016},
date = {2016-01-01},
urldate = {2016-01-01},
journal = {Physik in unserer Zeit},
volume = {47},
pages = {192-198},
abstract = {Die winkelaufgelöste Photoelektronen-Spektroskopie, Photoelektronen-Tomographie genannt, erlaubt die Rekonstruktion von Molekülorbitalen in drei Dimensionen. Dazu werden auf einer Metalloberfläche angeordnete Moleküle mit extremem ultravioletten Licht bestrahlt und die Winkel- und Energieverteilung der über den photoelektrischen Effekt herausgelösten Elektronen gemessen. Die Ergebnisse sind ein weiterer Beleg für das Konzept der Molekülorbitale, denen der Orbitaltheoretiker Kenichi Fukui 1977 eine “irgendwie unwirkliche Natur” zuschrieb. Anders als zum Beispiel Rastersonden-Methoden funktioniert die Photoelektronen-Tomographie auch bei Zimmertemperatur. Sie kann zudem Orbitale organischer Moleküle auf reaktiven Substraten abbilden. In Zukunft könnte sie auch 3D-Bilder von dynamischen Veränderungen in Orbitalen, zum Beispiel während chemischen Reaktionen, liefern.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Die winkelaufgelöste Photoelektronen-Spektroskopie, Photoelektronen-Tomographie genannt, erlaubt die Rekonstruktion von Molekülorbitalen in drei Dimensionen. Dazu werden auf einer Metalloberfläche angeordnete Moleküle mit extremem ultravioletten Licht bestrahlt und die Winkel- und Energieverteilung der über den photoelektrischen Effekt herausgelösten Elektronen gemessen. Die Ergebnisse sind ein weiterer Beleg für das Konzept der Molekülorbitale, denen der Orbitaltheoretiker Kenichi Fukui 1977 eine “irgendwie unwirkliche Natur” zuschrieb. Anders als zum Beispiel Rastersonden-Methoden funktioniert die Photoelektronen-Tomographie auch bei Zimmertemperatur. Sie kann zudem Orbitale organischer Moleküle auf reaktiven Substraten abbilden. In Zukunft könnte sie auch 3D-Bilder von dynamischen Veränderungen in Orbitalen, zum Beispiel während chemischen Reaktionen, liefern. |
2015
|
1. | S. Weiß, D. Lüftner, T. Ules, E. M. Reinisch, H. Kaser, A. Gottwald, M. Richter, S. Soubatch, G. Koller, M. G. Ramsey, F. S. Tautz, P. Puschnig Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography Journal Article In: Nat. Commun., vol. 6, pp. 8287, 2015. @article{Weiss2015,
title = {Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography},
author = {S. Weiß and D. Lüftner and T. Ules and E. M. Reinisch and H. Kaser and A. Gottwald and M. Richter and S. Soubatch and G. Koller and M. G. Ramsey and F. S. Tautz and P. Puschnig},
doi = {10.1038/ncomms9287},
year = {2015},
date = {2015-01-01},
journal = {Nat. Commun.},
volume = {6},
pages = {8287},
abstract = {Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule. |